YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ensemble Modeling of Hydrologic and Hydraulic Processes at One Shot: Application to Kinematic Open-Channel Flow under Uncertain Channel Properties and Uncertain Lateral Flow Conditions by the Stochastic Method of Characteristics

    Source: Journal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 003
    Author:
    A. Ercan
    ,
    M. L. Kavvas
    DOI: 10.1061/(ASCE)HE.1943-5584.0000434
    Publisher: American Society of Civil Engineers
    Abstract: A stochastic kinematic wave model for open channel flow is developed under uncertain channel properties and uncertain lateral flow conditions. Applying a known methodology, the Fokker-Planck equation (FPE) of the kinematic open-channel flow process under uncertain channel properties and uncertain lateral flow conditions is derived using the method of characteristics. Because every stochastic partial differential equation has a one-to-one relationship with a nonlocal Lagrangian-Eulerian Fokker-Planck equation (LEFPE), the LEFPE for the governing equation of any hydrologic or hydraulic process can be developed as the physically based stochastic model of the particular process. To quantify the ensemble behavior of a process, LEFPE provides a quantitative description of the time-space evolution of the probability density function of the state variables of the process at one shot. The nonlocal LEFPE reduces to the classical local FPE, which is more convenient to solve, under certain assumptions. The developed methodology is applied to two test problems under varying channel and lateral flow conditions, and the results are validated by Monte Carlo simulations. The numerical applications show that the developed FPE can express the ensemble behavior of the kinematic wave process under uncertain channel properties and uncertain lateral flow conditions adequately.
    • Download: (2.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ensemble Modeling of Hydrologic and Hydraulic Processes at One Shot: Application to Kinematic Open-Channel Flow under Uncertain Channel Properties and Uncertain Lateral Flow Conditions by the Stochastic Method of Characteristics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63314
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorA. Ercan
    contributor authorM. L. Kavvas
    date accessioned2017-05-08T21:49:07Z
    date available2017-05-08T21:49:07Z
    date copyrightMarch 2012
    date issued2012
    identifier other%28asce%29he%2E1943-5584%2E0000454.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63314
    description abstractA stochastic kinematic wave model for open channel flow is developed under uncertain channel properties and uncertain lateral flow conditions. Applying a known methodology, the Fokker-Planck equation (FPE) of the kinematic open-channel flow process under uncertain channel properties and uncertain lateral flow conditions is derived using the method of characteristics. Because every stochastic partial differential equation has a one-to-one relationship with a nonlocal Lagrangian-Eulerian Fokker-Planck equation (LEFPE), the LEFPE for the governing equation of any hydrologic or hydraulic process can be developed as the physically based stochastic model of the particular process. To quantify the ensemble behavior of a process, LEFPE provides a quantitative description of the time-space evolution of the probability density function of the state variables of the process at one shot. The nonlocal LEFPE reduces to the classical local FPE, which is more convenient to solve, under certain assumptions. The developed methodology is applied to two test problems under varying channel and lateral flow conditions, and the results are validated by Monte Carlo simulations. The numerical applications show that the developed FPE can express the ensemble behavior of the kinematic wave process under uncertain channel properties and uncertain lateral flow conditions adequately.
    publisherAmerican Society of Civil Engineers
    titleEnsemble Modeling of Hydrologic and Hydraulic Processes at One Shot: Application to Kinematic Open-Channel Flow under Uncertain Channel Properties and Uncertain Lateral Flow Conditions by the Stochastic Method of Characteristics
    typeJournal Paper
    journal volume17
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000434
    treeJournal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian