YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improving Model Performance Using Season-Based Evaluation

    Source: Journal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 001
    Author:
    Misgana K. Muleta
    DOI: 10.1061/(ASCE)HE.1943-5584.0000421
    Publisher: American Society of Civil Engineers
    Abstract: Computer models have become vital decision-making tools in many areas of science and engineering including water resources. However, models should be properly evaluated before use to improve the likelihood of making sound decisions based on their results. The model evaluation technique practiced today in hydrology assumes that model parameters are season insensitive and attempts to identify “optimal” values that would describe watershed behavior during dry and wet seasons. This assumption could compromise accuracy of model predictions. This study demonstrates performance improvement that would be achieved when a season-based model evaluation approach is pursued. A global sensitivity analysis (SA) model has been used to investigate seasonal sensitivity of streamflow parameters of a watershed simulation model on the headwaters of the Little River Watershed, one of the United States Department of Agriculture’s experimental watersheds. Two separate analyses have been performed: the conventional approach in which model parameters are assumed to be season insensitive; and a season-based evaluation in which the influential parameters may vary for months with a low runoff coefficient and months with a high runoff coefficient. The sensitivity analysis helped to identify dominant model and watershed behaviors for the conventional annual approach and for the wet and dry seasons. The SA results show that the influential parameters exhibited modest seasonal sensitivity for the experimental watershed. Model calibration was then performed by using the dynamically dimensioned search (DDS) algorithm for the conventional and season-based approaches using the principal parameters identified by the global SA model. Performance of the calibration attempts have been verified with the traditional split-sampling technique and also by assessing effectiveness of the model in predicting internal watershed behaviors through comparison of simulated streamflow with observations at multiple internal sites not used for calibration. Several efficiency measures have been used to test goodness of the model simulations. The season-based model evaluation technique showed superior performance compared with the traditional method of assuming constant model parameters across seasons. The watershed simulation model exhibited reasonable accuracy in simulating streamflow at the internal sites and for the verification periods when parameter values are allowed to vary from dry to wet season. The “optimal” parameter values identified by the calibration attempts showed significant seasonal sensitivity.
    • Download: (582.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improving Model Performance Using Season-Based Evaluation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/63301
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorMisgana K. Muleta
    date accessioned2017-05-08T21:49:06Z
    date available2017-05-08T21:49:06Z
    date copyrightJanuary 2012
    date issued2012
    identifier other%28asce%29he%2E1943-5584%2E0000442.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/63301
    description abstractComputer models have become vital decision-making tools in many areas of science and engineering including water resources. However, models should be properly evaluated before use to improve the likelihood of making sound decisions based on their results. The model evaluation technique practiced today in hydrology assumes that model parameters are season insensitive and attempts to identify “optimal” values that would describe watershed behavior during dry and wet seasons. This assumption could compromise accuracy of model predictions. This study demonstrates performance improvement that would be achieved when a season-based model evaluation approach is pursued. A global sensitivity analysis (SA) model has been used to investigate seasonal sensitivity of streamflow parameters of a watershed simulation model on the headwaters of the Little River Watershed, one of the United States Department of Agriculture’s experimental watersheds. Two separate analyses have been performed: the conventional approach in which model parameters are assumed to be season insensitive; and a season-based evaluation in which the influential parameters may vary for months with a low runoff coefficient and months with a high runoff coefficient. The sensitivity analysis helped to identify dominant model and watershed behaviors for the conventional annual approach and for the wet and dry seasons. The SA results show that the influential parameters exhibited modest seasonal sensitivity for the experimental watershed. Model calibration was then performed by using the dynamically dimensioned search (DDS) algorithm for the conventional and season-based approaches using the principal parameters identified by the global SA model. Performance of the calibration attempts have been verified with the traditional split-sampling technique and also by assessing effectiveness of the model in predicting internal watershed behaviors through comparison of simulated streamflow with observations at multiple internal sites not used for calibration. Several efficiency measures have been used to test goodness of the model simulations. The season-based model evaluation technique showed superior performance compared with the traditional method of assuming constant model parameters across seasons. The watershed simulation model exhibited reasonable accuracy in simulating streamflow at the internal sites and for the verification periods when parameter values are allowed to vary from dry to wet season. The “optimal” parameter values identified by the calibration attempts showed significant seasonal sensitivity.
    publisherAmerican Society of Civil Engineers
    titleImproving Model Performance Using Season-Based Evaluation
    typeJournal Paper
    journal volume17
    journal issue1
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000421
    treeJournal of Hydrologic Engineering:;2012:;Volume ( 017 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian