YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparative Study of Coupling Approaches for Surface Water and Subsurface Interactions

    Source: Journal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 005
    Author:
    Guobiao Huang
    ,
    Gour-Tsyh Yeh
    DOI: 10.1061/(ASCE)HE.1943-5584.0000017
    Publisher: American Society of Civil Engineers
    Abstract: In the core of an integrated watershed model there is coupling between surface water and subsurface water flows. Recently, interest in hydrology literature, regarding the fully coupled approach for surface and subsurface water interactions, has increased. For example, the assumption of a gradient-type flux equation, based on Darcy’s law and the numerical solution of all governing equations in a single global matrix, has been reported. This paper argues that this “fully coupled approach” is only a special case of all possible coupling combinations and, if not applied with caution, the nonphysics interface parameter becomes a calibration tool. Generally, there are two cases of surface/subsurface coupling based on the physical nature of the interface: continuous or discontinuous assumption; when a sediment layer exists at the interface, the discontinuous assumption may be justified. As for numerical schemes, there are three cases: time lagged, iterative, and simultaneous solutions. Since modelers often resort to the simplest, fastest schemes in practical applications, it is desirable to quantify potential errors and the performance specific to each coupling scheme. This paper evaluates these coupling schemes in a watershed model, WASH123D, with numerical experiments. They are designed to compare the performance of each coupling approach for different types of surface water and subsurface interactions. These experiments are evaluated in terms of surface water and subsurface water solutions, along with exchange flux (e.g. infiltration/seepage rate).
    • Download: (616.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparative Study of Coupling Approaches for Surface Water and Subsurface Interactions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62898
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorGuobiao Huang
    contributor authorGour-Tsyh Yeh
    date accessioned2017-05-08T21:48:23Z
    date available2017-05-08T21:48:23Z
    date copyrightMay 2009
    date issued2009
    identifier other%28asce%29he%2E1943-5584%2E0000038.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62898
    description abstractIn the core of an integrated watershed model there is coupling between surface water and subsurface water flows. Recently, interest in hydrology literature, regarding the fully coupled approach for surface and subsurface water interactions, has increased. For example, the assumption of a gradient-type flux equation, based on Darcy’s law and the numerical solution of all governing equations in a single global matrix, has been reported. This paper argues that this “fully coupled approach” is only a special case of all possible coupling combinations and, if not applied with caution, the nonphysics interface parameter becomes a calibration tool. Generally, there are two cases of surface/subsurface coupling based on the physical nature of the interface: continuous or discontinuous assumption; when a sediment layer exists at the interface, the discontinuous assumption may be justified. As for numerical schemes, there are three cases: time lagged, iterative, and simultaneous solutions. Since modelers often resort to the simplest, fastest schemes in practical applications, it is desirable to quantify potential errors and the performance specific to each coupling scheme. This paper evaluates these coupling schemes in a watershed model, WASH123D, with numerical experiments. They are designed to compare the performance of each coupling approach for different types of surface water and subsurface interactions. These experiments are evaluated in terms of surface water and subsurface water solutions, along with exchange flux (e.g. infiltration/seepage rate).
    publisherAmerican Society of Civil Engineers
    titleComparative Study of Coupling Approaches for Surface Water and Subsurface Interactions
    typeJournal Paper
    journal volume14
    journal issue5
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0000017
    treeJournal of Hydrologic Engineering:;2009:;Volume ( 014 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian