YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Integrated Fixed Film Activated Sludge Wastewater Treatment Processes at High Mean Cells Residence Time and Low Temperatures

    Source: Journal of Environmental Engineering:;2005:;Volume ( 131 ):;issue: 011
    Author:
    Tongchai Sriwiriyarat
    ,
    Clifford W. Randall
    DOI: 10.1061/(ASCE)0733-9372(2005)131:11(1550)
    Publisher: American Society of Civil Engineers
    Abstract: Suspended solids mean cells residence time (MCRT) and temperature are two key parameters for designing Integrated Fixed Film Activated Sludge (IFAS) wastewater treatment processes, as an alternative for achieving year-round nitrification. It has been demonstrated from both full-scale and bench-scale studies that IFAS can accomplish year-round nitrogen removal and denitrification in aerobic zones in winter when operated with suspended growth MCRTs less than the critical MCRT for nitrifiers, thus avoiding increasing reactor or clarifier volumes. The objective of this study was to investigate the performances of IFAS systems that were operated at relative high MCRT compared to nitrifier washout MCRT and low temperature for biological nutrient removal. The comparison between two IFAS systems with Accuweb media in both the anoxic and aerobic zones, and a conventional three zone biological nutrient nemoval (BNR) system was conducted at 10°C with a 10 day MCRT using the UCT/VIP configuration for both systems and feeding with Blacksburg domestic wastewater. Influent flow was split 50% to the first anaerobic reactor and 50% to the first anoxic reactor to enhance denitrification in one of IFAS systems and the conventional BNR control system whereas 100% of the influent flow was fed to the first anaerobic reactor in the other IFAS system. The data from this investigation indicated that the performances of the control and IFAS systems were insignificantly different under the experimental operating conditions for both biological nitrogen and biological phosphorus removal except for IFAS with integrated fixed film media in the anoxic zone and when 50% of the influent was added directly to the first anoxic reactor.
    • Download: (108.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Integrated Fixed Film Activated Sludge Wastewater Treatment Processes at High Mean Cells Residence Time and Low Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/62286
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorTongchai Sriwiriyarat
    contributor authorClifford W. Randall
    date accessioned2017-05-08T21:47:10Z
    date available2017-05-08T21:47:10Z
    date copyrightNovember 2005
    date issued2005
    identifier other%28asce%290733-9372%282005%29131%3A11%281550%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62286
    description abstractSuspended solids mean cells residence time (MCRT) and temperature are two key parameters for designing Integrated Fixed Film Activated Sludge (IFAS) wastewater treatment processes, as an alternative for achieving year-round nitrification. It has been demonstrated from both full-scale and bench-scale studies that IFAS can accomplish year-round nitrogen removal and denitrification in aerobic zones in winter when operated with suspended growth MCRTs less than the critical MCRT for nitrifiers, thus avoiding increasing reactor or clarifier volumes. The objective of this study was to investigate the performances of IFAS systems that were operated at relative high MCRT compared to nitrifier washout MCRT and low temperature for biological nutrient removal. The comparison between two IFAS systems with Accuweb media in both the anoxic and aerobic zones, and a conventional three zone biological nutrient nemoval (BNR) system was conducted at 10°C with a 10 day MCRT using the UCT/VIP configuration for both systems and feeding with Blacksburg domestic wastewater. Influent flow was split 50% to the first anaerobic reactor and 50% to the first anoxic reactor to enhance denitrification in one of IFAS systems and the conventional BNR control system whereas 100% of the influent flow was fed to the first anaerobic reactor in the other IFAS system. The data from this investigation indicated that the performances of the control and IFAS systems were insignificantly different under the experimental operating conditions for both biological nitrogen and biological phosphorus removal except for IFAS with integrated fixed film media in the anoxic zone and when 50% of the influent was added directly to the first anoxic reactor.
    publisherAmerican Society of Civil Engineers
    titleEvaluation of Integrated Fixed Film Activated Sludge Wastewater Treatment Processes at High Mean Cells Residence Time and Low Temperatures
    typeJournal Paper
    journal volume131
    journal issue11
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2005)131:11(1550)
    treeJournal of Environmental Engineering:;2005:;Volume ( 131 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian