Show simple item record

contributor authorMahdi Taiebat
contributor authorAmir M. Kaynia
contributor authorYannis F. Dafalias
date accessioned2017-05-08T21:47:06Z
date available2017-05-08T21:47:06Z
date copyrightMay 2011
date issued2011
identifier other%28asce%29gt%2E1943-5606%2E0000474.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/62239
description abstractThe anisotropic nature of response and degradation of shear strength from the undisturbed condition to the remolded state are two fundamental and challenging aspects of response in some clay deposits. This paper presents a comprehensive, yet flexible and practical, version of the SANICLAY model and its application to a seismic slope-stability problem. The model is based on the well-known isotropic modified Cam-Clay model with two additional mechanisms to account for anisotropy and destructuration. The model has been efficiently implemented in a three-dimensional (3D) continuum, coupled, dynamic, finite-difference program. The program has been used to analyze the seismic response of clay slopes to gain better insight into the role of the previously mentioned parameters in real applications. Different aspects of the model, including anisotropy and destructuration, and their effects on the earthquake-induced strains and deformations in the slope have then been explored and presented. By providing a link between the model parameters and the soil’s undrained shear strength, which is a well-known engineering parameter, a benchmark comparison has been made between the results of the present advanced model and those of an engineering approach. To this end, a modified Newmark sliding-block analysis has been used, in which the yield acceleration is gradually reduced as block sliding progresses during the earthquake. It is observed that although the two analyses display the same trends, the modified Newmark sliding-block method provides conservative results compared with those obtained from the developed simulation model.
publisherAmerican Society of Civil Engineers
titleApplication of an Anisotropic Constitutive Model for Structured Clay to Seismic Slope Stability
typeJournal Paper
journal volume137
journal issue5
journal titleJournal of Geotechnical and Geoenvironmental Engineering
identifier doi10.1061/(ASCE)GT.1943-5606.0000458
treeJournal of Geotechnical and Geoenvironmental Engineering:;2011:;Volume ( 137 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record