YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Suspended Sediment during Construction in Great Barrier Reef World Heritage Area

    Source: Journal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 009
    Author:
    Tom Hardy
    ,
    Luciano Mason
    ,
    Jason McConochie
    ,
    Lance Bode
    DOI: 10.1061/(ASCE)0733-9372(2004)130:9(1021)
    Publisher: American Society of Civil Engineers
    Abstract: A marina was constructed in the Great Barrier Reef World Heritage Area in close proximity to coral reefs that could be damaged by excess turbidity generated during construction. Since there was uncertainty about both the fate of suspended sediments and their effect on corals, initial water quality constraints were set very conservatively. In order to better understand the movement of suspended sediment during construction, a numerical model study was commissioned using three-dimensional, numerical, hydrodynamic, and Lagrangian particle tracking models. The study was successful in: (1) increasing the understanding of and reducing the uncertainty of sediment dispersal patterns under a range of common forcing conditions; (2) testing the variation in suspended sediment concentrations over sensitive areas for two different outfall locations; (3) offering evidence that a good choice in outfall locations will reduce the threat to corals; and importantly (4) presenting the results in a way that enhanced understanding by nontechnical reef managers. This final result was achieved by creating movies of sediment movement that clearly demonstrated the complex hydrodynamic processes involved with near-coastal water currents. Specific model results showed: (1) that a more seaward outfall increases effluent dispersal away from sensitive areas; (2) the highest concentrations of effluent over sensitive sites occur during no wind and neap tide conditions; and (3) prevailing southeast winds advect effluent offshore, away from sensitive sites.
    • Download: (2.423Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Suspended Sediment during Construction in Great Barrier Reef World Heritage Area

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61553
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorTom Hardy
    contributor authorLuciano Mason
    contributor authorJason McConochie
    contributor authorLance Bode
    date accessioned2017-05-08T21:45:24Z
    date available2017-05-08T21:45:24Z
    date copyrightSeptember 2004
    date issued2004
    identifier other%28asce%290733-9372%282004%29130%3A9%281021%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61553
    description abstractA marina was constructed in the Great Barrier Reef World Heritage Area in close proximity to coral reefs that could be damaged by excess turbidity generated during construction. Since there was uncertainty about both the fate of suspended sediments and their effect on corals, initial water quality constraints were set very conservatively. In order to better understand the movement of suspended sediment during construction, a numerical model study was commissioned using three-dimensional, numerical, hydrodynamic, and Lagrangian particle tracking models. The study was successful in: (1) increasing the understanding of and reducing the uncertainty of sediment dispersal patterns under a range of common forcing conditions; (2) testing the variation in suspended sediment concentrations over sensitive areas for two different outfall locations; (3) offering evidence that a good choice in outfall locations will reduce the threat to corals; and importantly (4) presenting the results in a way that enhanced understanding by nontechnical reef managers. This final result was achieved by creating movies of sediment movement that clearly demonstrated the complex hydrodynamic processes involved with near-coastal water currents. Specific model results showed: (1) that a more seaward outfall increases effluent dispersal away from sensitive areas; (2) the highest concentrations of effluent over sensitive sites occur during no wind and neap tide conditions; and (3) prevailing southeast winds advect effluent offshore, away from sensitive sites.
    publisherAmerican Society of Civil Engineers
    titleModeling Suspended Sediment during Construction in Great Barrier Reef World Heritage Area
    typeJournal Paper
    journal volume130
    journal issue9
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2004)130:9(1021)
    treeJournal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian