YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fiber Reinforcement for Waste Containment Soil Liners

    Source: Journal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 008
    Author:
    Carol J. Miller
    ,
    Sami Rifai
    DOI: 10.1061/(ASCE)0733-9372(2004)130:8(891)
    Publisher: American Society of Civil Engineers
    Abstract: The hydraulic properties of compacted clay liners can be adversely affected by desiccation cracking. Previous studies evaluated the use of soil additives (such as lime, cement, and sand) for crack reduction. Initial results indicated that soil shrinkage was reduced. However, in many cases, the additives resulted in an increased hydraulic conductivity and decrease in soil plasticity. As a result, there is an increasing interest in the use of fiber reinforcement, which has shown successful results in concrete and other material applications. The present investigation focused on the impact of fiber reinforcement on the development of desiccation cracks in compacted clay samples, as well as the impact of the fiber additives on soil workability, compaction characteristics and hydraulic conductivity. The results of this study indicate that, for the soils of this investigation, the optimum fiber content necessary to achieve maximum crack reduction and maximum dry density, while maintaining acceptable hydraulic conductivity, is between 0.4 and 0.5%. The observed crack reduction for this range of fiber content was approximately 50%, as compared to the unamended soil sample. The maximum observed crack reduction was approximately 90%, for a fiber content of 0.8%. Although the crack reduction could be increased further by increasing the fiber content, the sample hydraulic conductivity increased significantly and the practical limits of mixture workability were exceeded.
    • Download: (266.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fiber Reinforcement for Waste Containment Soil Liners

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61486
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorCarol J. Miller
    contributor authorSami Rifai
    date accessioned2017-05-08T21:45:19Z
    date available2017-05-08T21:45:19Z
    date copyrightAugust 2004
    date issued2004
    identifier other%28asce%290733-9372%282004%29130%3A8%28891%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61486
    description abstractThe hydraulic properties of compacted clay liners can be adversely affected by desiccation cracking. Previous studies evaluated the use of soil additives (such as lime, cement, and sand) for crack reduction. Initial results indicated that soil shrinkage was reduced. However, in many cases, the additives resulted in an increased hydraulic conductivity and decrease in soil plasticity. As a result, there is an increasing interest in the use of fiber reinforcement, which has shown successful results in concrete and other material applications. The present investigation focused on the impact of fiber reinforcement on the development of desiccation cracks in compacted clay samples, as well as the impact of the fiber additives on soil workability, compaction characteristics and hydraulic conductivity. The results of this study indicate that, for the soils of this investigation, the optimum fiber content necessary to achieve maximum crack reduction and maximum dry density, while maintaining acceptable hydraulic conductivity, is between 0.4 and 0.5%. The observed crack reduction for this range of fiber content was approximately 50%, as compared to the unamended soil sample. The maximum observed crack reduction was approximately 90%, for a fiber content of 0.8%. Although the crack reduction could be increased further by increasing the fiber content, the sample hydraulic conductivity increased significantly and the practical limits of mixture workability were exceeded.
    publisherAmerican Society of Civil Engineers
    titleFiber Reinforcement for Waste Containment Soil Liners
    typeJournal Paper
    journal volume130
    journal issue8
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2004)130:8(891)
    treeJournal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian