YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determining Hardness and Elastic Modulus of Asphalt by Nanoindentation

    Source: International Journal of Geomechanics:;2010:;Volume ( 010 ):;issue: 003
    Author:
    Rafiqul A. Tarefder
    ,
    Arif M. Zaman
    ,
    Waheed Uddin
    DOI: 10.1061/(ASCE)GM.1943-5622.0000048
    Publisher: American Society of Civil Engineers
    Abstract: Nanoindentation is a relatively new technique which has been used to measure nanomechanical properties of surface layers of bulk materials and of thin films. In this study, micromechanical properties such as hardness and Young’s modulus of asphalt binders and asphalt concrete are determined by nanoindentation experiments. Indentation tests are conducted on a base binder and two polymer-modified performance grade (PG) binders such as PG-70-22 and PG76-28. In addition, two Superpave asphalt mixes such as SP-B and SP-III are designed using these PG binders, and the corresponding mixes are compacted to prepare asphalt concrete. Aggregate, matrix (Materials Passing No. 4 sieve) and mastic (Materials Passing No. 200 sieve) phases of each asphalt concrete sample are indented using both Berkovich and Spherical indenters. In nanoindentation, an indenter penetrates into asphalt material and the load (milli-Newton) and the depth (nanometers) of indentation are recorded continuously. Indentation load versus displacement data are analyzed using Oliver and Pharr method to measure hardness and Young’s modulus. The unloading data of base binder is a straight line and therefore could not be analyzed using Oliver and Pharr’s method. However, the indentation data of the PG grade binders are successfully analyzed. Young’s modulus value is less than 3 GPa for mastic, 3 to 12 GPa for matrix, and greater than 12 GPa for aggregate studied herein. Based on the hardness data, mastic is 2 to 15 times softer than matrix materials, and matrix is 10 times softer than aggregate materials. The fact that the properties of the mastic can be measured while in the mixture, this study has great potential for realistic characterization of asphalt mixture components. In this study, spherical indenter is found to be suitable for asphalt binders based on the fact that the spherical indenter produces higher indentation depths than the Berkovich indenter. The study contributes significantly to the use of nanoindentation for transportation material characterization.
    • Download: (937.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determining Hardness and Elastic Modulus of Asphalt by Nanoindentation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61443
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorRafiqul A. Tarefder
    contributor authorArif M. Zaman
    contributor authorWaheed Uddin
    date accessioned2017-05-08T21:45:14Z
    date available2017-05-08T21:45:14Z
    date copyrightJune 2010
    date issued2010
    identifier other%28asce%29gm%2E1943-5622%2E0000060.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61443
    description abstractNanoindentation is a relatively new technique which has been used to measure nanomechanical properties of surface layers of bulk materials and of thin films. In this study, micromechanical properties such as hardness and Young’s modulus of asphalt binders and asphalt concrete are determined by nanoindentation experiments. Indentation tests are conducted on a base binder and two polymer-modified performance grade (PG) binders such as PG-70-22 and PG76-28. In addition, two Superpave asphalt mixes such as SP-B and SP-III are designed using these PG binders, and the corresponding mixes are compacted to prepare asphalt concrete. Aggregate, matrix (Materials Passing No. 4 sieve) and mastic (Materials Passing No. 200 sieve) phases of each asphalt concrete sample are indented using both Berkovich and Spherical indenters. In nanoindentation, an indenter penetrates into asphalt material and the load (milli-Newton) and the depth (nanometers) of indentation are recorded continuously. Indentation load versus displacement data are analyzed using Oliver and Pharr method to measure hardness and Young’s modulus. The unloading data of base binder is a straight line and therefore could not be analyzed using Oliver and Pharr’s method. However, the indentation data of the PG grade binders are successfully analyzed. Young’s modulus value is less than 3 GPa for mastic, 3 to 12 GPa for matrix, and greater than 12 GPa for aggregate studied herein. Based on the hardness data, mastic is 2 to 15 times softer than matrix materials, and matrix is 10 times softer than aggregate materials. The fact that the properties of the mastic can be measured while in the mixture, this study has great potential for realistic characterization of asphalt mixture components. In this study, spherical indenter is found to be suitable for asphalt binders based on the fact that the spherical indenter produces higher indentation depths than the Berkovich indenter. The study contributes significantly to the use of nanoindentation for transportation material characterization.
    publisherAmerican Society of Civil Engineers
    titleDetermining Hardness and Elastic Modulus of Asphalt by Nanoindentation
    typeJournal Paper
    journal volume10
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0000048
    treeInternational Journal of Geomechanics:;2010:;Volume ( 010 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian