YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling of Vegetation-Erosion Dynamics in Watershed Systems

    Source: Journal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 007
    Author:
    Z.-Y. Wang
    ,
    G. H. Huang
    ,
    G. Q. Wang
    ,
    J. Gao
    DOI: 10.1061/(ASCE)0733-9372(2004)130:7(792)
    Publisher: American Society of Civil Engineers
    Abstract: Vegetation and erosion are a pair of competing and interactive factors that affect the quality of watershed ecosystems. The objective of this study is to develop an innovative approach for conceptualizing and simulating the vegetation-erosion dynamics. Differential equations of vegetation-erosion dynamics have been developed to describe the relevant vegetation processes, with the relevant solution methods being provided. Based on the developed model, a vegetation-erosion chart can be produced for predicting the tendencies of vegetation and erosion under different land-use conditions. Thus decision supports in terms of desired measures to improve the system conditions can be provided. In general, vegetation of a watershed may exist in three states, including (1) vegetation-developing and erosion-reducing; (2) vegetation-deteriorating and erosion-increasing; and (3) transitional state between states (1) and (2). Humans may change a watershed system from one state into another. The effort needed for such a change depends on the distance between the present position and the destination one as shown on the vegetation-erosion chart. The developed model has been applied to three regions, including the Xiaojiang, Heishui, and Shengou Watersheds in China. The results demonstrate that the proposed vegetation-erosion dynamics is a powerful tool for simulating and predicting vegetation evolutions in the watersheds. Generally, reforestation and erosion-control measures would improve vegetation coverage slowly in the first 10 years, but become much faster in the second 10 years; this implies that a long-term strategy is needed. The results also indicate that, for revegetating hilly areas, erosion control is critical; merely planting trees and shrubs is insufficient for greening the exposed land.
    • Download: (146.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling of Vegetation-Erosion Dynamics in Watershed Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61342
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorZ.-Y. Wang
    contributor authorG. H. Huang
    contributor authorG. Q. Wang
    contributor authorJ. Gao
    date accessioned2017-05-08T21:44:57Z
    date available2017-05-08T21:44:57Z
    date copyrightJuly 2004
    date issued2004
    identifier other%28asce%290733-9372%282004%29130%3A7%28792%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61342
    description abstractVegetation and erosion are a pair of competing and interactive factors that affect the quality of watershed ecosystems. The objective of this study is to develop an innovative approach for conceptualizing and simulating the vegetation-erosion dynamics. Differential equations of vegetation-erosion dynamics have been developed to describe the relevant vegetation processes, with the relevant solution methods being provided. Based on the developed model, a vegetation-erosion chart can be produced for predicting the tendencies of vegetation and erosion under different land-use conditions. Thus decision supports in terms of desired measures to improve the system conditions can be provided. In general, vegetation of a watershed may exist in three states, including (1) vegetation-developing and erosion-reducing; (2) vegetation-deteriorating and erosion-increasing; and (3) transitional state between states (1) and (2). Humans may change a watershed system from one state into another. The effort needed for such a change depends on the distance between the present position and the destination one as shown on the vegetation-erosion chart. The developed model has been applied to three regions, including the Xiaojiang, Heishui, and Shengou Watersheds in China. The results demonstrate that the proposed vegetation-erosion dynamics is a powerful tool for simulating and predicting vegetation evolutions in the watersheds. Generally, reforestation and erosion-control measures would improve vegetation coverage slowly in the first 10 years, but become much faster in the second 10 years; this implies that a long-term strategy is needed. The results also indicate that, for revegetating hilly areas, erosion control is critical; merely planting trees and shrubs is insufficient for greening the exposed land.
    publisherAmerican Society of Civil Engineers
    titleModeling of Vegetation-Erosion Dynamics in Watershed Systems
    typeJournal Paper
    journal volume130
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2004)130:7(792)
    treeJournal of Environmental Engineering:;2004:;Volume ( 130 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian