YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Prediction of Influent Flow Rate: Data-Mining Approach

    Source: Journal of Energy Engineering:;2013:;Volume ( 139 ):;issue: 002
    Author:
    Xiupeng Wei
    ,
    Andrew Kusiak
    ,
    Hosseini Rahil Sadat
    DOI: 10.1061/(ASCE)EY.1943-7897.0000103
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, models for short-term prediction of influent flow rate in a wastewater-treatment plant are discussed. The prediction horizon of the model is up to 180 min. The influent flow rate, rainfall rate, and radar reflectivity data are used to build the prediction model by different data-mining algorithms. The multilayer perceptron neural network algorithm has been selected to build the prediction models for different time horizons. The computational results show that the prediction model performs well for horizons up to 150 min. Both the peak values and the trends are accurately predicted by the model. There is a small lag between the predicted and observed influent flow rate for horizons exceeding 30 min. The lag becomes larger with the increase of the prediction horizon.
    • Download: (1.444Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Prediction of Influent Flow Rate: Data-Mining Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/61334
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorXiupeng Wei
    contributor authorAndrew Kusiak
    contributor authorHosseini Rahil Sadat
    date accessioned2017-05-08T21:44:56Z
    date available2017-05-08T21:44:56Z
    date copyrightJune 2013
    date issued2013
    identifier other%28asce%29ey%2E1943-7897%2E0000114.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/61334
    description abstractIn this paper, models for short-term prediction of influent flow rate in a wastewater-treatment plant are discussed. The prediction horizon of the model is up to 180 min. The influent flow rate, rainfall rate, and radar reflectivity data are used to build the prediction model by different data-mining algorithms. The multilayer perceptron neural network algorithm has been selected to build the prediction models for different time horizons. The computational results show that the prediction model performs well for horizons up to 150 min. Both the peak values and the trends are accurately predicted by the model. There is a small lag between the predicted and observed influent flow rate for horizons exceeding 30 min. The lag becomes larger with the increase of the prediction horizon.
    publisherAmerican Society of Civil Engineers
    titlePrediction of Influent Flow Rate: Data-Mining Approach
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000103
    treeJournal of Energy Engineering:;2013:;Volume ( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian