YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damage Detection for Space Truss Structures Based on Strain Mode under Ambient Excitation

    Source: Journal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 010
    Author:
    Zhao-Dong
    ,
    Xu
    ,
    Ke-Yi
    ,
    Wu
    DOI: 10.1061/(ASCE)EM.1943-7889.0000426
    Publisher: American Society of Civil Engineers
    Abstract: Safety assurance and detection of potential damage for space truss structures have been challenging topics. The two most critical problems are considered in this paper. One is to develop an effective damage detection method based on strain data under ambient excitation, and the other is then to optimize the installment of strain sensors owing to numerous structural members in the space truss structures. A method of damage detection for space truss structures, called the environmental excitation incomplete strain mode (EEISM) method, is proposed. Four steps are taken in the EEISM method. First, strain mode parameter identification is carried out based on the cross-correlation function of the strain responses through a combination of the empirical mode decomposition method and the peak amplitude series method. Second, the strain sensors are located optimally in the space truss structures through sensitive analysis of the strain mode perturbation matrix, which are obtained by perturbation theory. Third, the modal assurance criterion (MAC) value is applied to locate the damages; that is, the members with the larger MAC values are defined as the damaged members. Finally, a damage index obtained by solving the perturbation equation is used for damage quantification. Numerical analysis of a long-span space truss structure including damage location and quantification for single-member and multimember damages, detection of the various severities of damage, and the effect of the number of sensors is performed to verify the effectiveness of the proposed EEISM method. It is shown from the analysis results that the EEISM method is effective in the location and quantification of damages for single-member and multimember damages. The quantity of the strain sensors has an effect on the damage location and has no remarkable effect on the damage quantification for the determined damage members.
    • Download: (930.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damage Detection for Space Truss Structures Based on Strain Mode under Ambient Excitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60905
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorZhao-Dong
    contributor authorXu
    contributor authorKe-Yi
    contributor authorWu
    date accessioned2017-05-08T21:43:53Z
    date available2017-05-08T21:43:53Z
    date copyrightOctober 2012
    date issued2012
    identifier other%28asce%29em%2E1943-7889%2E0000436.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60905
    description abstractSafety assurance and detection of potential damage for space truss structures have been challenging topics. The two most critical problems are considered in this paper. One is to develop an effective damage detection method based on strain data under ambient excitation, and the other is then to optimize the installment of strain sensors owing to numerous structural members in the space truss structures. A method of damage detection for space truss structures, called the environmental excitation incomplete strain mode (EEISM) method, is proposed. Four steps are taken in the EEISM method. First, strain mode parameter identification is carried out based on the cross-correlation function of the strain responses through a combination of the empirical mode decomposition method and the peak amplitude series method. Second, the strain sensors are located optimally in the space truss structures through sensitive analysis of the strain mode perturbation matrix, which are obtained by perturbation theory. Third, the modal assurance criterion (MAC) value is applied to locate the damages; that is, the members with the larger MAC values are defined as the damaged members. Finally, a damage index obtained by solving the perturbation equation is used for damage quantification. Numerical analysis of a long-span space truss structure including damage location and quantification for single-member and multimember damages, detection of the various severities of damage, and the effect of the number of sensors is performed to verify the effectiveness of the proposed EEISM method. It is shown from the analysis results that the EEISM method is effective in the location and quantification of damages for single-member and multimember damages. The quantity of the strain sensors has an effect on the damage location and has no remarkable effect on the damage quantification for the determined damage members.
    publisherAmerican Society of Civil Engineers
    titleDamage Detection for Space Truss Structures Based on Strain Mode under Ambient Excitation
    typeJournal Paper
    journal volume138
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000426
    treeJournal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian