YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of Non-Gaussian Stochastic Process with Target Power Spectral Density and Lower-Order Moments

    Source: Journal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 005
    Author:
    Jinhua Li
    ,
    Chunxiang Li
    DOI: 10.1061/(ASCE)EM.1943-7889.0000349
    Publisher: American Society of Civil Engineers
    Abstract: In this paper, a direct simulation algorithm is presented for the generation of a class of non-Gaussian stochastic processes according to target lower-order moments and prescribed power spectral density (PSD) function. The proposed algorithm is to expand the autoregressive (AR) model and the autoregressive moving average (ARMA) model, which are available to generate Gaussian random process, to simulate directly non-Gaussian stochastic process. The coefficients of the AR or ARMA model are determined based on the prescribed PSD function. It is well known that outputting stochastic process is also non-Gaussian if inputting white noise is non-Gaussian. But the skewness and kurtosis of the outputting non-Gaussian random process are not identical to these of inputting non-Gaussian white noise. In this paper, the relationships of lower-order moments such as skewness and kurtosis between output and input are analyzed and close to linear transformations. To corroborate the feasibility and correctness of the present methodology, numerical examples involving simulation of fluctuating wind pressures are taken into consideration. Numerical results indicate that the skewness and kurtosis of generated wind pressures based on the AR or ARMA model closely match their targets. In addition, the PSD and correlation functions of simulated samples also show considerably good agreement with prescribed functions. Therefore, the proposed algorithm is effective to simulate directly the class of non-Gaussian stochastic process.
    • Download: (487.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of Non-Gaussian Stochastic Process with Target Power Spectral Density and Lower-Order Moments

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60820
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorJinhua Li
    contributor authorChunxiang Li
    date accessioned2017-05-08T21:43:43Z
    date available2017-05-08T21:43:43Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29em%2E1943-7889%2E0000358.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60820
    description abstractIn this paper, a direct simulation algorithm is presented for the generation of a class of non-Gaussian stochastic processes according to target lower-order moments and prescribed power spectral density (PSD) function. The proposed algorithm is to expand the autoregressive (AR) model and the autoregressive moving average (ARMA) model, which are available to generate Gaussian random process, to simulate directly non-Gaussian stochastic process. The coefficients of the AR or ARMA model are determined based on the prescribed PSD function. It is well known that outputting stochastic process is also non-Gaussian if inputting white noise is non-Gaussian. But the skewness and kurtosis of the outputting non-Gaussian random process are not identical to these of inputting non-Gaussian white noise. In this paper, the relationships of lower-order moments such as skewness and kurtosis between output and input are analyzed and close to linear transformations. To corroborate the feasibility and correctness of the present methodology, numerical examples involving simulation of fluctuating wind pressures are taken into consideration. Numerical results indicate that the skewness and kurtosis of generated wind pressures based on the AR or ARMA model closely match their targets. In addition, the PSD and correlation functions of simulated samples also show considerably good agreement with prescribed functions. Therefore, the proposed algorithm is effective to simulate directly the class of non-Gaussian stochastic process.
    publisherAmerican Society of Civil Engineers
    titleSimulation of Non-Gaussian Stochastic Process with Target Power Spectral Density and Lower-Order Moments
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000349
    treeJournal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian