YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damage Identification of Euler–Bernoulli Beams Using Static Responses

    Source: Journal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 005
    Author:
    Faouzi Ghrib
    ,
    Li Li
    ,
    Patricia Wilbur
    DOI: 10.1061/(ASCE)EM.1943-7889.0000345
    Publisher: American Society of Civil Engineers
    Abstract: The paper presents two computational procedures to reconstruct the stiffness distribution and to detect damage in Euler–Bernoulli beams. A novel methodology of damage identification is developed using static deflection measurements. The first formulation is based on the principle of the equilibrium gap along with a finite-element discretization, and leads to an overdeterminate linear system. The solution is obtained by minimizing a regularized functional using a Tikhonov total variation (TTV) scheme. The second proposed formulation is a minimization of a data-discrepancy functional between measured and model-based deflections. The optimal solution is obtained using a gradient-based minimization algorithm and the adjoint method to calculate the Jacobian. Also discussed is a simple procedure to measure the deflection of beams using a close-range photogrammetry technique. An edge detection-based algorithm is devised for quasi-continuous deflection measurement. The proposed identification methodology is validated using experimental data. Four beams with predefined damage scenarios are tested. In each case, the location and damage levels are reconstructed with good accuracy. However, results show that, in general, the equilibrium gap-based formulation has greater success than the data-discrepancy method. The proposed methodology has the potential to be used for long-term health monitoring and damage assessment of civil engineering structures.
    • Download: (1.975Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damage Identification of Euler–Bernoulli Beams Using Static Responses

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60815
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorFaouzi Ghrib
    contributor authorLi Li
    contributor authorPatricia Wilbur
    date accessioned2017-05-08T21:43:43Z
    date available2017-05-08T21:43:43Z
    date copyrightMay 2012
    date issued2012
    identifier other%28asce%29em%2E1943-7889%2E0000354.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60815
    description abstractThe paper presents two computational procedures to reconstruct the stiffness distribution and to detect damage in Euler–Bernoulli beams. A novel methodology of damage identification is developed using static deflection measurements. The first formulation is based on the principle of the equilibrium gap along with a finite-element discretization, and leads to an overdeterminate linear system. The solution is obtained by minimizing a regularized functional using a Tikhonov total variation (TTV) scheme. The second proposed formulation is a minimization of a data-discrepancy functional between measured and model-based deflections. The optimal solution is obtained using a gradient-based minimization algorithm and the adjoint method to calculate the Jacobian. Also discussed is a simple procedure to measure the deflection of beams using a close-range photogrammetry technique. An edge detection-based algorithm is devised for quasi-continuous deflection measurement. The proposed identification methodology is validated using experimental data. Four beams with predefined damage scenarios are tested. In each case, the location and damage levels are reconstructed with good accuracy. However, results show that, in general, the equilibrium gap-based formulation has greater success than the data-discrepancy method. The proposed methodology has the potential to be used for long-term health monitoring and damage assessment of civil engineering structures.
    publisherAmerican Society of Civil Engineers
    titleDamage Identification of Euler–Bernoulli Beams Using Static Responses
    typeJournal Paper
    journal volume138
    journal issue5
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000345
    treeJournal of Engineering Mechanics:;2012:;Volume ( 138 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian