YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation

    Source: Journal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 012
    Author:
    Antonino Spada
    ,
    Giuseppe Giambanco
    ,
    Piervincenzo Rizzo
    DOI: 10.1061/(ASCE)EM.1943-7889.0000287
    Publisher: American Society of Civil Engineers
    Abstract: In this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, brittle, or quasi-brittle materials. The Helmholtz free energy is written to model the materials’ hardening or softening. Isotropic damage is considered, and the possible effects of dilatancy are taken into account, including nonassociative flow rules. The formulation is implemented into the finite-element code FEAP. In the companion paper, the new model is adopted to predict the mechanical response to the pullout force of postinstalled rebar chemically bonded in concrete. The analytical model and the numerical implementation are experimentally validated by several pullout tests, which are monitored by using an acoustic-emission technique.
    • Download: (2.535Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60752
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorAntonino Spada
    contributor authorGiuseppe Giambanco
    contributor authorPiervincenzo Rizzo
    date accessioned2017-05-08T21:43:33Z
    date available2017-05-08T21:43:33Z
    date copyrightDecember 2011
    date issued2011
    identifier other%28asce%29em%2E1943-7889%2E0000296.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60752
    description abstractIn this and in the companion paper, the mechanical response of adhesive anchor systems is theoretically and numerically predicted and experimentally observed. The theoretical prediction is on the basis of an elastoplastic damaging model formulated to predict the structural response associated with the development of a fracture in adhesive anchor systems. This part describes the analytical model developed in the framework of a thermodynamically consistent theory, which assumes adhesion where the structure is sound, and friction in correspondence with the fracture. Isotropic damage is considered. The model can predict the structural behavior at the interface between two surfaces of ductile, brittle, or quasi-brittle materials. The Helmholtz free energy is written to model the materials’ hardening or softening. Isotropic damage is considered, and the possible effects of dilatancy are taken into account, including nonassociative flow rules. The formulation is implemented into the finite-element code FEAP. In the companion paper, the new model is adopted to predict the mechanical response to the pullout force of postinstalled rebar chemically bonded in concrete. The analytical model and the numerical implementation are experimentally validated by several pullout tests, which are monitored by using an acoustic-emission technique.
    publisherAmerican Society of Civil Engineers
    titleElastoplastic Damaging Model for Adhesive Anchor Systems. I: Theoretical Formulation and Numerical Implementation
    typeJournal Paper
    journal volume137
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000287
    treeJournal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian