YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Viscoelastoplastic Continuum Damage Model for Asphalt Concrete in Tension

    Source: Journal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 011
    Author:
    Shane B. Underwood
    ,
    Richard Y. Kim
    DOI: 10.1061/(ASCE)EM.1943-7889.0000277
    Publisher: American Society of Civil Engineers
    Abstract: A viscoelastoplastic continuum damage model has been derived and characterized for describing the behavior of asphalt concrete subject to an all-around confining pressure and deviatoric tension loading. The primary application of this model is to better understand the fatigue damage process in asphalt concrete pavements. As a result of this application and because of the bimodal behavior of this material outside the linear viscoelastic range, the modeling effort has focused primarily on the tensile characteristics. The developed model uses the elastic-viscoelastic correspondence principle, work-potential theory with damage mechanics, time-temperature superposition with growing damage, and strain-hardening viscoplasticity to arrive at a constitutive relationship. This relationship considers the experimentally observed transformation of asphalt concrete from an initially isotropic material to a transversely isotropic one by using a single-state parameter and three different damage functions. The relationship between these damage functions and the more conventional values of the modulus and Poisson’s ratio is shown to gain further physical insight into the material. Characterization of the model is performed by using constant crosshead rate monotonic tension tests with and without confinement and low strain temperature and frequency sweep complex modulus tests. The model is found to adequately describe the response of asphalt concrete under constant crosshead rate tension tests at various rates and two temperatures, the conditions that are not used in characterization.
    • Download: (1.175Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Viscoelastoplastic Continuum Damage Model for Asphalt Concrete in Tension

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60741
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorShane B. Underwood
    contributor authorRichard Y. Kim
    date accessioned2017-05-08T21:43:32Z
    date available2017-05-08T21:43:32Z
    date copyrightNovember 2011
    date issued2011
    identifier other%28asce%29em%2E1943-7889%2E0000286.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60741
    description abstractA viscoelastoplastic continuum damage model has been derived and characterized for describing the behavior of asphalt concrete subject to an all-around confining pressure and deviatoric tension loading. The primary application of this model is to better understand the fatigue damage process in asphalt concrete pavements. As a result of this application and because of the bimodal behavior of this material outside the linear viscoelastic range, the modeling effort has focused primarily on the tensile characteristics. The developed model uses the elastic-viscoelastic correspondence principle, work-potential theory with damage mechanics, time-temperature superposition with growing damage, and strain-hardening viscoplasticity to arrive at a constitutive relationship. This relationship considers the experimentally observed transformation of asphalt concrete from an initially isotropic material to a transversely isotropic one by using a single-state parameter and three different damage functions. The relationship between these damage functions and the more conventional values of the modulus and Poisson’s ratio is shown to gain further physical insight into the material. Characterization of the model is performed by using constant crosshead rate monotonic tension tests with and without confinement and low strain temperature and frequency sweep complex modulus tests. The model is found to adequately describe the response of asphalt concrete under constant crosshead rate tension tests at various rates and two temperatures, the conditions that are not used in characterization.
    publisherAmerican Society of Civil Engineers
    titleViscoelastoplastic Continuum Damage Model for Asphalt Concrete in Tension
    typeJournal Paper
    journal volume137
    journal issue11
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000277
    treeJournal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian