YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wave Propagation in a Pipe Pile for Low-Strain Integrity Testing

    Source: Journal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 009
    Author:
    Xuanming Ding
    ,
    Hanlong Liu
    ,
    Jinyuan Liu
    ,
    Yumin Chen
    DOI: 10.1061/(ASCE)EM.1943-7889.0000263
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an analytical solution methodology for a tubular structure subjected to a transient point loading in low-strain integrity testing. The three-dimensional effects on the pile head and the applicability of plane-section assumption are the main problems in low-strain integrity testing on a large-diameter tubular structure, such as a pipe pile. The propagation of stress waves in a tubular structure cannot be expressed by one-dimensional wave theory on the basis of plane-section assumption. This paper establishes the computational model of a large-diameter tubular structure with a variable wave impedance section, where the soil resistance is simulated by the Winkler model, and the exciting force is simulated with semisinusoidal impulse. The defects are classified into the change in the wall thickness and Young’s modulus. Combining the boundary and initial conditions, a frequency-domain analytical solution of a three-dimensional wave equation is deduced from the Fourier transform method and the separation of variables methods. On the basis of the frequency-domain analytic solution, the time-domain response is obtained from the inverse Fourier transform method. The three-dimensional finite-element models are used to verify the validity of analytical solutions for both an intact and a defective pipe pile. The analytical solutions obtained from frequency domain are compared with the finite-element method (FEM) results on both pipe piles in this paper, including the velocity time history, peak value, incident time arrival, and reflected wave crests. A case study is shown and the characteristics of velocity response time history on the top of an intact and a defective pile are investigated. The comparisons show that the analytical solution derived in this paper is reliable for application in the integrity testing on a tubular structure.
    • Download: (1.088Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wave Propagation in a Pipe Pile for Low-Strain Integrity Testing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60726
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXuanming Ding
    contributor authorHanlong Liu
    contributor authorJinyuan Liu
    contributor authorYumin Chen
    date accessioned2017-05-08T21:43:31Z
    date available2017-05-08T21:43:31Z
    date copyrightSeptember 2011
    date issued2011
    identifier other%28asce%29em%2E1943-7889%2E0000273.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60726
    description abstractThis paper presents an analytical solution methodology for a tubular structure subjected to a transient point loading in low-strain integrity testing. The three-dimensional effects on the pile head and the applicability of plane-section assumption are the main problems in low-strain integrity testing on a large-diameter tubular structure, such as a pipe pile. The propagation of stress waves in a tubular structure cannot be expressed by one-dimensional wave theory on the basis of plane-section assumption. This paper establishes the computational model of a large-diameter tubular structure with a variable wave impedance section, where the soil resistance is simulated by the Winkler model, and the exciting force is simulated with semisinusoidal impulse. The defects are classified into the change in the wall thickness and Young’s modulus. Combining the boundary and initial conditions, a frequency-domain analytical solution of a three-dimensional wave equation is deduced from the Fourier transform method and the separation of variables methods. On the basis of the frequency-domain analytic solution, the time-domain response is obtained from the inverse Fourier transform method. The three-dimensional finite-element models are used to verify the validity of analytical solutions for both an intact and a defective pipe pile. The analytical solutions obtained from frequency domain are compared with the finite-element method (FEM) results on both pipe piles in this paper, including the velocity time history, peak value, incident time arrival, and reflected wave crests. A case study is shown and the characteristics of velocity response time history on the top of an intact and a defective pile are investigated. The comparisons show that the analytical solution derived in this paper is reliable for application in the integrity testing on a tubular structure.
    publisherAmerican Society of Civil Engineers
    titleWave Propagation in a Pipe Pile for Low-Strain Integrity Testing
    typeJournal Paper
    journal volume137
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000263
    treeJournal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian