YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Load Transfer and Recovery Length in Parallel Wires of Suspension Bridge Cables

    Source: Journal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 004
    Author:
    Haim Waisman
    ,
    Arturo Montoya
    ,
    Raimondo Betti
    ,
    I. C. Noyan
    DOI: 10.1061/(ASCE)EM.1943-7889.0000220
    Publisher: American Society of Civil Engineers
    Abstract: A new simplified contact model aimed at capturing the load transfer and recovery length in parallel steel wires, commonly used in main cables of suspension bridges, is presented. The approach is based on placing elastic–perfectly plastic spring elements at the contact region between the objects. These springs have varying stiffness (Model I) or yielding (Model II) depending on their proximity to the clamping loads. Their stiffness or yielding is highest when they are closer to this force, and it decays when they are farther away from the clamp. This decayed behavior is assigned according to Boussinesq’s well-known solution to a point load (applied on a half space). Both models converge quickly compared with a full contact model and recover Coulomb friction law on a two-dimensional (2D) benchmark problem. Moreover, when the same properties are chosen for all springs (disregarding Boussinesq solutions), the models reduce to the classical shear-lag model, which for high clamping (point) loads gives inaccurate results. The spring models are validated experimentally on a seven-wire tightened strand. In this case study, the outer wires are axially pulled, whereas the middle wire, slightly shorter than the outer wires, experiences no direct applied axial load. However, because the strand is radially fastened at several locations, the axial load is transferred to the inner wire by an interfriction mechanism between the wires. The strains at the center points of the outer and inner wires are measured via neutron diffraction for different clamping loads, showing that the inner wire is capable of recovering most of the load.
    • Download: (309.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Load Transfer and Recovery Length in Parallel Wires of Suspension Bridge Cables

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60679
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorHaim Waisman
    contributor authorArturo Montoya
    contributor authorRaimondo Betti
    contributor authorI. C. Noyan
    date accessioned2017-05-08T21:43:27Z
    date available2017-05-08T21:43:27Z
    date copyrightApril 2011
    date issued2011
    identifier other%28asce%29em%2E1943-7889%2E0000229.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60679
    description abstractA new simplified contact model aimed at capturing the load transfer and recovery length in parallel steel wires, commonly used in main cables of suspension bridges, is presented. The approach is based on placing elastic–perfectly plastic spring elements at the contact region between the objects. These springs have varying stiffness (Model I) or yielding (Model II) depending on their proximity to the clamping loads. Their stiffness or yielding is highest when they are closer to this force, and it decays when they are farther away from the clamp. This decayed behavior is assigned according to Boussinesq’s well-known solution to a point load (applied on a half space). Both models converge quickly compared with a full contact model and recover Coulomb friction law on a two-dimensional (2D) benchmark problem. Moreover, when the same properties are chosen for all springs (disregarding Boussinesq solutions), the models reduce to the classical shear-lag model, which for high clamping (point) loads gives inaccurate results. The spring models are validated experimentally on a seven-wire tightened strand. In this case study, the outer wires are axially pulled, whereas the middle wire, slightly shorter than the outer wires, experiences no direct applied axial load. However, because the strand is radially fastened at several locations, the axial load is transferred to the inner wire by an interfriction mechanism between the wires. The strains at the center points of the outer and inner wires are measured via neutron diffraction for different clamping loads, showing that the inner wire is capable of recovering most of the load.
    publisherAmerican Society of Civil Engineers
    titleLoad Transfer and Recovery Length in Parallel Wires of Suspension Bridge Cables
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000220
    treeJournal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian