YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Support Vector Machines Approach to HMA Stiffness Prediction

    Source: Journal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 002
    Author:
    Kasthurirangan Gopalakrishnan
    ,
    Sunghwan Kim
    DOI: 10.1061/(ASCE)EM.1943-7889.0000214
    Publisher: American Society of Civil Engineers
    Abstract: The application of artificial intelligence (AI) techniques to engineering has increased tremendously over the last decade. Support vector machine (SVM) is one efficient AI technique based on statistical learning theory. This paper explores the SVM approach to model the mechanical behavior of hot-mix asphalt (HMA) owing to high degree of complexity and uncertainty inherent in HMA modeling. The dynamic modulus
    • Download: (990.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Support Vector Machines Approach to HMA Stiffness Prediction

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60672
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorKasthurirangan Gopalakrishnan
    contributor authorSunghwan Kim
    date accessioned2017-05-08T21:43:26Z
    date available2017-05-08T21:43:26Z
    date copyrightFebruary 2011
    date issued2011
    identifier other%28asce%29em%2E1943-7889%2E0000223.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60672
    description abstractThe application of artificial intelligence (AI) techniques to engineering has increased tremendously over the last decade. Support vector machine (SVM) is one efficient AI technique based on statistical learning theory. This paper explores the SVM approach to model the mechanical behavior of hot-mix asphalt (HMA) owing to high degree of complexity and uncertainty inherent in HMA modeling. The dynamic modulus
    publisherAmerican Society of Civil Engineers
    titleSupport Vector Machines Approach to HMA Stiffness Prediction
    typeJournal Paper
    journal volume137
    journal issue2
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000214
    treeJournal of Engineering Mechanics:;2011:;Volume ( 137 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian