YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mesh Dependence and Nonlocal Regularization of One-Dimensional Strain Softening Plasticity

    Source: Journal of Engineering Mechanics:;2010:;Volume ( 136 ):;issue: 011
    Author:
    S. Wu
    ,
    X. Wang
    DOI: 10.1061/(ASCE)EM.1943-7889.0000184
    Publisher: American Society of Civil Engineers
    Abstract: Finite-element analysis of strain localization based on classical theory of continuum mechanics suffers from pathological mesh dependence when strain softening models are used. For quasistatic problems, the mesh dependence is demonstrated through an analysis of the tangent stiffness matrix of a one-dimensional problem. To regularize the mesh dependence, a nonlocal strain softening model is proposed, which is based on the nonlocal plasticity theory and the representative line element. Both analytical and numerical solutions of strain localization with the proposed model are developed and compared with each other. The model is also applied in the numerical simulation of a direct tensile test of a concrete specimen in the existing literature, and reasonable agreement is achieved between numerical solutions and the experimental response.
    • Download: (378.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mesh Dependence and Nonlocal Regularization of One-Dimensional Strain Softening Plasticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60640
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorS. Wu
    contributor authorX. Wang
    date accessioned2017-05-08T21:43:24Z
    date available2017-05-08T21:43:24Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29em%2E1943-7889%2E0000193.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60640
    description abstractFinite-element analysis of strain localization based on classical theory of continuum mechanics suffers from pathological mesh dependence when strain softening models are used. For quasistatic problems, the mesh dependence is demonstrated through an analysis of the tangent stiffness matrix of a one-dimensional problem. To regularize the mesh dependence, a nonlocal strain softening model is proposed, which is based on the nonlocal plasticity theory and the representative line element. Both analytical and numerical solutions of strain localization with the proposed model are developed and compared with each other. The model is also applied in the numerical simulation of a direct tensile test of a concrete specimen in the existing literature, and reasonable agreement is achieved between numerical solutions and the experimental response.
    publisherAmerican Society of Civil Engineers
    titleMesh Dependence and Nonlocal Regularization of One-Dimensional Strain Softening Plasticity
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000184
    treeJournal of Engineering Mechanics:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian