YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Solution for Fracture Analysis of CFRP Sheet–Strengthened Cracked Concrete Beams

    Source: Journal of Engineering Mechanics:;2010:;Volume ( 136 ):;issue: 010
    Author:
    Zhimin Wu
    ,
    Shutong Yang
    ,
    Xiaozhi Hu
    ,
    Jianjun Zheng
    ,
    Xinglang Fan
    ,
    Jingsong Shan
    DOI: 10.1061/(ASCE)EM.1943-7889.0000157
    Publisher: American Society of Civil Engineers
    Abstract: Fiber-reinforced polymer (FRP) composite materials have been widely used in the field of retrofitting. Theoretical analysis of FRP plate- or sheet-strengthened cracked concrete beams is necessary for estimating service reliability of the structural members. In previous studies, the effect of a perfectly bonded FRP plate or sheet was equivalent to a cohesive force acting at the bottom of crack to delay the crack propagation in concrete and reduce the crack width. However, delamination between FRP and cracked beam is inevitable due to interfacial shear stress concentration at the bottom of crack. The intention of this paper is to present an analytical solution for fracture analysis of carbon FRP (CFRP) sheet–strengthened cracked concrete beams by considering both vertical crack propagation in concrete and interfacial debonding at CFRP-concrete interface. The interfacial debonding is modeled as the interfacial shear crack propagation in this paper. Four different stages are discussed after initial cracking state of the concrete. At the first stage, only fictitious crack propagation occurs in the concrete. At the second stage, macrocrack propagates in the concrete without interfacial debonding. At the third stage, both vertical macrocrack propagation in the concrete and horizontal shear crack propagation at the CFRP-concrete interface occur in the strengthened beam. The tensile stress in the CFRP sheet and interfacial shear stress along the span are formulated based on the deformation compatibility condition at the CFRP-concrete interface at this stage. Finally, macroshear crack propagates at the interface until the CFRP sheet is completely peeled out from the beam, and then the member is fractured. The applied load is determined as a function of the referred two crack lengths at different stages. At the beginning, the applied load increases to one peak value with the full propagation of fictitious crack at the first stage. At the third stage, the applied load is improved to another peak value due to the relatively high cohesive effect of the CFRP sheet. Then the two peak values are determined by the Lagrange multiplier method. The validity of the proposed analytical solution is verified with the experimental results and numerical simulations. It can be concluded that the proposed analytical solution can predict the load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with reasonable accuracy.
    • Download: (2.351Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Solution for Fracture Analysis of CFRP Sheet–Strengthened Cracked Concrete Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60610
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorZhimin Wu
    contributor authorShutong Yang
    contributor authorXiaozhi Hu
    contributor authorJianjun Zheng
    contributor authorXinglang Fan
    contributor authorJingsong Shan
    date accessioned2017-05-08T21:43:22Z
    date available2017-05-08T21:43:22Z
    date copyrightOctober 2010
    date issued2010
    identifier other%28asce%29em%2E1943-7889%2E0000166.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60610
    description abstractFiber-reinforced polymer (FRP) composite materials have been widely used in the field of retrofitting. Theoretical analysis of FRP plate- or sheet-strengthened cracked concrete beams is necessary for estimating service reliability of the structural members. In previous studies, the effect of a perfectly bonded FRP plate or sheet was equivalent to a cohesive force acting at the bottom of crack to delay the crack propagation in concrete and reduce the crack width. However, delamination between FRP and cracked beam is inevitable due to interfacial shear stress concentration at the bottom of crack. The intention of this paper is to present an analytical solution for fracture analysis of carbon FRP (CFRP) sheet–strengthened cracked concrete beams by considering both vertical crack propagation in concrete and interfacial debonding at CFRP-concrete interface. The interfacial debonding is modeled as the interfacial shear crack propagation in this paper. Four different stages are discussed after initial cracking state of the concrete. At the first stage, only fictitious crack propagation occurs in the concrete. At the second stage, macrocrack propagates in the concrete without interfacial debonding. At the third stage, both vertical macrocrack propagation in the concrete and horizontal shear crack propagation at the CFRP-concrete interface occur in the strengthened beam. The tensile stress in the CFRP sheet and interfacial shear stress along the span are formulated based on the deformation compatibility condition at the CFRP-concrete interface at this stage. Finally, macroshear crack propagates at the interface until the CFRP sheet is completely peeled out from the beam, and then the member is fractured. The applied load is determined as a function of the referred two crack lengths at different stages. At the beginning, the applied load increases to one peak value with the full propagation of fictitious crack at the first stage. At the third stage, the applied load is improved to another peak value due to the relatively high cohesive effect of the CFRP sheet. Then the two peak values are determined by the Lagrange multiplier method. The validity of the proposed analytical solution is verified with the experimental results and numerical simulations. It can be concluded that the proposed analytical solution can predict the load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with reasonable accuracy.
    publisherAmerican Society of Civil Engineers
    titleAnalytical Solution for Fracture Analysis of CFRP Sheet–Strengthened Cracked Concrete Beams
    typeJournal Paper
    journal volume136
    journal issue10
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000157
    treeJournal of Engineering Mechanics:;2010:;Volume ( 136 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian