YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions

    Source: Journal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 012
    Author:
    Sharif Rahman
    DOI: 10.1061/(ASCE)EM.1943-7889.0000047
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents an extended polynomial dimensional decomposition method for solving stochastic problems subject to independent random input following an arbitrary probability distribution. The method involves Fourier-polynomial expansions of component functions by orthogonal polynomial bases, the Stieltjes procedure for generating the recursion coefficients of orthogonal polynomials and the Gauss quadrature rule for a specified probability measure, and dimension-reduction integration for calculating the expansion coefficients. The extension, which subsumes nonclassical orthogonal polynomials bases, generates a convergent sequence of lower-variate estimates of the probabilistic characteristics of a stochastic response. Numerical results indicate that the extended decomposition method provides accurate, convergent, and computationally efficient estimates of the tail probability of random mathematical functions or reliability of mechanical systems. The convergence of the extended method accelerates significantly when employing measure-consistent orthogonal polynomials.
    • Download: (86.16Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60494
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorSharif Rahman
    date accessioned2017-05-08T21:43:09Z
    date available2017-05-08T21:43:09Z
    date copyrightDecember 2009
    date issued2009
    identifier other%28asce%29em%2E1943-7889%2E0000057.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60494
    description abstractThis paper presents an extended polynomial dimensional decomposition method for solving stochastic problems subject to independent random input following an arbitrary probability distribution. The method involves Fourier-polynomial expansions of component functions by orthogonal polynomial bases, the Stieltjes procedure for generating the recursion coefficients of orthogonal polynomials and the Gauss quadrature rule for a specified probability measure, and dimension-reduction integration for calculating the expansion coefficients. The extension, which subsumes nonclassical orthogonal polynomials bases, generates a convergent sequence of lower-variate estimates of the probabilistic characteristics of a stochastic response. Numerical results indicate that the extended decomposition method provides accurate, convergent, and computationally efficient estimates of the tail probability of random mathematical functions or reliability of mechanical systems. The convergence of the extended method accelerates significantly when employing measure-consistent orthogonal polynomials.
    publisherAmerican Society of Civil Engineers
    titleExtended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions
    typeJournal Paper
    journal volume135
    journal issue12
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0000047
    treeJournal of Engineering Mechanics:;2009:;Volume ( 135 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian