YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    Source: Journal of Environmental Engineering:;2013:;Volume ( 139 ):;issue: 010
    Author:
    Robert A. Brown
    ,
    Michael Borst
    DOI: 10.1061/(ASCE)EE.1943-7870.0000734
    Publisher: American Society of Civil Engineers
    Abstract: Infiltration is a primary functional mechanism in green infrastructure storm water controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, New Jersey, and Louisville, Kentucky. In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha parking lot surfaced with three permeable pavement types (permeable interlocking concrete pavers, pervious concrete, and porous asphalt). Paired TDRs were installed at two locations in each permeable pavement type and at a depth of 0.4 m below the driving surface. The relative volumetric water content (RVWC) prior to an event had a significant negative correlation to antecedent dry period, and the peak RVWC during an event had a significant positive correlation to the peak 5-min rainfall intensity. The TDRs measured a significantly different response when water was presumably infiltrating as direct rainfall compared to rainfall combined with runoff from a contributing drainage area. The results indicated clogging progressed from the upgradient edge. Based on the lessons learned at Edison, TDRs were installed in permeable pavement strips in Louisville, Kentucky, during December 2011. The TDR placement strategy was selected to understand the spatial infiltration of runoff and to document clogging and infiltration dynamics. As contributing drainage area size and condition impacts incoming sediment load, and the runoff infiltrates along the upgradient edge of the permeable pavement surface, the ratio of drainage area to working width of permeable surface is an important design parameter to predict the rate of clogging. At Edison, the design ratio of contributing drainage area to permeable pavement width at the upgradient edge was
    • Download: (702.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/60190
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorRobert A. Brown
    contributor authorMichael Borst
    date accessioned2017-05-08T21:42:36Z
    date available2017-05-08T21:42:36Z
    date copyrightOctober 2013
    date issued2013
    identifier other%28asce%29ee%2E1943-7870%2E0000742.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/60190
    description abstractInfiltration is a primary functional mechanism in green infrastructure storm water controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, New Jersey, and Louisville, Kentucky. In 2009, the U.S. Environmental Protection Agency constructed a 0.4-ha parking lot surfaced with three permeable pavement types (permeable interlocking concrete pavers, pervious concrete, and porous asphalt). Paired TDRs were installed at two locations in each permeable pavement type and at a depth of 0.4 m below the driving surface. The relative volumetric water content (RVWC) prior to an event had a significant negative correlation to antecedent dry period, and the peak RVWC during an event had a significant positive correlation to the peak 5-min rainfall intensity. The TDRs measured a significantly different response when water was presumably infiltrating as direct rainfall compared to rainfall combined with runoff from a contributing drainage area. The results indicated clogging progressed from the upgradient edge. Based on the lessons learned at Edison, TDRs were installed in permeable pavement strips in Louisville, Kentucky, during December 2011. The TDR placement strategy was selected to understand the spatial infiltration of runoff and to document clogging and infiltration dynamics. As contributing drainage area size and condition impacts incoming sediment load, and the runoff infiltrates along the upgradient edge of the permeable pavement surface, the ratio of drainage area to working width of permeable surface is an important design parameter to predict the rate of clogging. At Edison, the design ratio of contributing drainage area to permeable pavement width at the upgradient edge was
    publisherAmerican Society of Civil Engineers
    titleAssessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000734
    treeJournal of Environmental Engineering:;2013:;Volume ( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian