YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Can Surface Overflow Rate Predict Particulate Matter Load Capture for Common Urban Drainage Appurtenances?

    Source: Journal of Environmental Engineering:;2012:;Volume ( 138 ):;issue: 007
    Author:
    A. Bolognesi
    ,
    A. Ciccarello
    ,
    M. Maglionico
    ,
    J.-Y. Kim
    ,
    S. Artina
    ,
    J. Sansalone
    DOI: 10.1061/(ASCE)EE.1943-7870.0000512
    Publisher: American Society of Civil Engineers
    Abstract: Urban drainage appurtenances separate particulate matter (PM) and detritus unintentionally and by design. Such PM separation impacts conveyance, treatment, and maintenance practices. This study examines two common appurtenances: Gully pots (or catch basins) and screened hydrodynamic separators (HS). Under steady and controlled physical model testing, PM separation was measured for influent granulometry [particle size distributions (PSDs), PM specific gravity]. Catch basin separation ranged from 40 to 99% for a monodisperse (well-graded sand, SW) PSD and 60 to 83% for a hetero-disperse PSD. With similar testing, a clean HS (to avoid scour dominating PM separation), the HS was also loaded with a heterodisperse sandy silt (ML) and tested as a function of flow, with separation of 40 to 65%, as compared to 70 to 99% for the SW, similar to the catch basin. Physical model results were compared to the surface overflow rate (SOR) model, illustrating that the SOR overestimated PM separation by 3–13%. The SOR was extended to unsteady runoff events. For unsteady loading of an HS with complex hydrodynamics and short residence times, the SOR overpredicted measured PM separation by 3–22% on the basis of PM granulometry. For maintenance and coarse PM load inventories, the SOR can reasonably predict the fate of coarse PM, subject to Type I settling in an HS and catch basin units with similar PM separation behavior. If suspended PM mass dominates the particle size distribution (PSD), is the focus of treatment, or for units with long residence times, the continuous phase hydrodynamics must be coupled with a discrete phase model, requiring analytical or numerical models such as computational fluid dynamics (CFD). For conditions illustrated herein, the SOR is reasonably robust.
    • Download: (526.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Can Surface Overflow Rate Predict Particulate Matter Load Capture for Common Urban Drainage Appurtenances?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59946
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorA. Bolognesi
    contributor authorA. Ciccarello
    contributor authorM. Maglionico
    contributor authorJ.-Y. Kim
    contributor authorS. Artina
    contributor authorJ. Sansalone
    date accessioned2017-05-08T21:42:10Z
    date available2017-05-08T21:42:10Z
    date copyrightJuly 2012
    date issued2012
    identifier other%28asce%29ee%2E1943-7870%2E0000520.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59946
    description abstractUrban drainage appurtenances separate particulate matter (PM) and detritus unintentionally and by design. Such PM separation impacts conveyance, treatment, and maintenance practices. This study examines two common appurtenances: Gully pots (or catch basins) and screened hydrodynamic separators (HS). Under steady and controlled physical model testing, PM separation was measured for influent granulometry [particle size distributions (PSDs), PM specific gravity]. Catch basin separation ranged from 40 to 99% for a monodisperse (well-graded sand, SW) PSD and 60 to 83% for a hetero-disperse PSD. With similar testing, a clean HS (to avoid scour dominating PM separation), the HS was also loaded with a heterodisperse sandy silt (ML) and tested as a function of flow, with separation of 40 to 65%, as compared to 70 to 99% for the SW, similar to the catch basin. Physical model results were compared to the surface overflow rate (SOR) model, illustrating that the SOR overestimated PM separation by 3–13%. The SOR was extended to unsteady runoff events. For unsteady loading of an HS with complex hydrodynamics and short residence times, the SOR overpredicted measured PM separation by 3–22% on the basis of PM granulometry. For maintenance and coarse PM load inventories, the SOR can reasonably predict the fate of coarse PM, subject to Type I settling in an HS and catch basin units with similar PM separation behavior. If suspended PM mass dominates the particle size distribution (PSD), is the focus of treatment, or for units with long residence times, the continuous phase hydrodynamics must be coupled with a discrete phase model, requiring analytical or numerical models such as computational fluid dynamics (CFD). For conditions illustrated herein, the SOR is reasonably robust.
    publisherAmerican Society of Civil Engineers
    titleCan Surface Overflow Rate Predict Particulate Matter Load Capture for Common Urban Drainage Appurtenances?
    typeJournal Paper
    journal volume138
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000512
    treeJournal of Environmental Engineering:;2012:;Volume ( 138 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian