YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Role of Mixing Energy in the Flocculation of Mature Fine Tailings

    Source: Journal of Environmental Engineering:;2012:;Volume ( 138 ):;issue: 001
    Author:
    Alebachew Demoz
    ,
    Randy J. Mikula
    DOI: 10.1061/(ASCE)EE.1943-7870.0000457
    Publisher: American Society of Civil Engineers
    Abstract: High-molecular-weight polymer flocculants are used for accelerated dewatering of mature fine tailings (MFTs) to reclaim the land occupied by containment ponds. Two anionic polymers were used to flocculate an MFT sample containing 98% by weight of fines smaller than 44 μm in diameter, with 85% of this fraction being clay minerals. The polymer solutions and polymer-treated MFT followed the Herschel-Bulkley and Bingham equations of state, respectively. The coupling of shear thinning and structural breakdown of the flocculated MFT gave rise to cavern formation during mixing. The mixing energy input for a series of MFT flocculation tests, in which other conditions were held constant, was proportional to the mixing time. The mixing tools used for the flocculation process were a Rushton turbine (RT), a pitched-blade turbine (PBT), a vane, and hydrofoil impellers. The flocculation outcome was evaluated on the basis of the amount of water released and the capillary suction test time (CST). The CST of the treated MFT was inversely proportional to its water release volume in settling columns. There was a clear peak in the rate of water release and a minimum in the CST as a function of mixing time, clearly showing that there is an optimal mixing energy that corresponds to the most rapid dewatering of flocculated MFT.
    • Download: (412.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Role of Mixing Energy in the Flocculation of Mature Fine Tailings

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59887
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorAlebachew Demoz
    contributor authorRandy J. Mikula
    date accessioned2017-05-08T21:42:06Z
    date available2017-05-08T21:42:06Z
    date copyrightJanuary 2012
    date issued2012
    identifier other%28asce%29ee%2E1943-7870%2E0000465.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59887
    description abstractHigh-molecular-weight polymer flocculants are used for accelerated dewatering of mature fine tailings (MFTs) to reclaim the land occupied by containment ponds. Two anionic polymers were used to flocculate an MFT sample containing 98% by weight of fines smaller than 44 μm in diameter, with 85% of this fraction being clay minerals. The polymer solutions and polymer-treated MFT followed the Herschel-Bulkley and Bingham equations of state, respectively. The coupling of shear thinning and structural breakdown of the flocculated MFT gave rise to cavern formation during mixing. The mixing energy input for a series of MFT flocculation tests, in which other conditions were held constant, was proportional to the mixing time. The mixing tools used for the flocculation process were a Rushton turbine (RT), a pitched-blade turbine (PBT), a vane, and hydrofoil impellers. The flocculation outcome was evaluated on the basis of the amount of water released and the capillary suction test time (CST). The CST of the treated MFT was inversely proportional to its water release volume in settling columns. There was a clear peak in the rate of water release and a minimum in the CST as a function of mixing time, clearly showing that there is an optimal mixing energy that corresponds to the most rapid dewatering of flocculated MFT.
    publisherAmerican Society of Civil Engineers
    titleRole of Mixing Energy in the Flocculation of Mature Fine Tailings
    typeJournal Paper
    journal volume138
    journal issue1
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000457
    treeJournal of Environmental Engineering:;2012:;Volume ( 138 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian