YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Considering Bacteria-Sediment Associations in Microbial Fate and Transport Modeling

    Source: Journal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 008
    Author:
    Stephen A. Russo
    ,
    Joshua Hunn
    ,
    Gregory W. Characklis
    DOI: 10.1061/(ASCE)EE.1943-7870.0000363
    Publisher: American Society of Civil Engineers
    Abstract: The development of a total maximum daily load (TMDL) for water bodies impaired by elevated microbial levels (the second leading cause of impairment nationally) requires an understanding of microbial transport processes at the watershed scale. Continuous monitoring of impaired water bodies can be expensive, and models are typically employed, but most current models represent bacteria as single discrete (“free” phase) organisms with near-neutral buoyancy, subject to first-order decay resulting primarily from predation or die-off. Studies indicate, however, that a significant fraction of microbes are associated with sediment particles, both in the water column and bed-sediments, associations that can impact microbial transport behavior and survival rates. This work incorporates considerations of microbial partitioning and its impact on survival into microbial fate and transport modeling using a well-characterized watershed. Agreement between observed and modeled instream microbial concentrations is comparable to, or better than, that seen in similar studies. Nonetheless, differences in instream concentration between model runs that consider microbe-sediment association (with attendant survival differences) and those that assume all microbes exist in the free phase are relatively small. A sensitivity analysis of relevant model inputs further indicates the minor effects of incorporating these considerations. The low settling velocities of small particles with which microbes typically associate and the dominance of other inputs related to wet weather microbial loadings, when compared with resuspension, result in the reduced significance of microbial partitioning as a factor in water quality modeling.
    • Download: (447.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Considering Bacteria-Sediment Associations in Microbial Fate and Transport Modeling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59783
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorStephen A. Russo
    contributor authorJoshua Hunn
    contributor authorGregory W. Characklis
    date accessioned2017-05-08T21:41:55Z
    date available2017-05-08T21:41:55Z
    date copyrightAugust 2011
    date issued2011
    identifier other%28asce%29ee%2E1943-7870%2E0000371.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59783
    description abstractThe development of a total maximum daily load (TMDL) for water bodies impaired by elevated microbial levels (the second leading cause of impairment nationally) requires an understanding of microbial transport processes at the watershed scale. Continuous monitoring of impaired water bodies can be expensive, and models are typically employed, but most current models represent bacteria as single discrete (“free” phase) organisms with near-neutral buoyancy, subject to first-order decay resulting primarily from predation or die-off. Studies indicate, however, that a significant fraction of microbes are associated with sediment particles, both in the water column and bed-sediments, associations that can impact microbial transport behavior and survival rates. This work incorporates considerations of microbial partitioning and its impact on survival into microbial fate and transport modeling using a well-characterized watershed. Agreement between observed and modeled instream microbial concentrations is comparable to, or better than, that seen in similar studies. Nonetheless, differences in instream concentration between model runs that consider microbe-sediment association (with attendant survival differences) and those that assume all microbes exist in the free phase are relatively small. A sensitivity analysis of relevant model inputs further indicates the minor effects of incorporating these considerations. The low settling velocities of small particles with which microbes typically associate and the dominance of other inputs related to wet weather microbial loadings, when compared with resuspension, result in the reduced significance of microbial partitioning as a factor in water quality modeling.
    publisherAmerican Society of Civil Engineers
    titleConsidering Bacteria-Sediment Associations in Microbial Fate and Transport Modeling
    typeJournal Paper
    journal volume137
    journal issue8
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000363
    treeJournal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian