YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling Resuspension in a Dynamic Water Supply Reservoir

    Source: Journal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 007
    Author:
    Emmet M. Owens
    ,
    Rakesh K. Gelda
    ,
    Steven W. Effler
    ,
    P. J. Rusello
    ,
    Edwin C. Cowen
    ,
    Donald C. Pierson
    DOI: 10.1061/(ASCE)EE.1943-7870.0000358
    Publisher: American Society of Civil Engineers
    Abstract: Enhancements to the two-dimensional lake and reservoir water quality model W2Tn to simulate the effects of currents and waves on sediment resuspension and turbidity are described. Bed stress attributable to currents was computed by the hydrothermal component of W2Tn, whereas a surface wave component was added to W2Tn to determine bed stress owing to waves. Resuspension flux is computed from bed stress and is included as a source of turbidity to the water column. The model is tested through application to Schoharie Reservoir, a drinking water supply that experiences episodes of elevated turbidity caused by runoff events and exacerbated by drawdown. Model predictions of bed stress attributed to currents are validated by using measurements obtained from acoustic Doppler instrumentation. The surface wave component of the model is established on a framework that has been previously validated for Schoharie Reservoir. Testing of the enhanced turbidity component of W2Tn was completed for a 3.5-year period of historical observations, which included a number of runoff events covering a range of severity and variations in reservoir drawdown. The enhanced model performed well in simulating observed conditions in the water column. The resuspension mechanism made a significant contribution to the predicted turbidity during periods of reservoir drawdown and during a severe runoff event. The model also performed well in simulating the observed turbidity of the drinking water withdrawal. Resuspension of particles contributing to turbidity was largely attributable to reservoir currents with surface wave-induced resuspension playing a smaller role. The potential application of this model to other water bodies and water quality issues is discussed.
    • Download: (400.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling Resuspension in a Dynamic Water Supply Reservoir

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59778
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorEmmet M. Owens
    contributor authorRakesh K. Gelda
    contributor authorSteven W. Effler
    contributor authorP. J. Rusello
    contributor authorEdwin C. Cowen
    contributor authorDonald C. Pierson
    date accessioned2017-05-08T21:41:54Z
    date available2017-05-08T21:41:54Z
    date copyrightJuly 2011
    date issued2011
    identifier other%28asce%29ee%2E1943-7870%2E0000366.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59778
    description abstractEnhancements to the two-dimensional lake and reservoir water quality model W2Tn to simulate the effects of currents and waves on sediment resuspension and turbidity are described. Bed stress attributable to currents was computed by the hydrothermal component of W2Tn, whereas a surface wave component was added to W2Tn to determine bed stress owing to waves. Resuspension flux is computed from bed stress and is included as a source of turbidity to the water column. The model is tested through application to Schoharie Reservoir, a drinking water supply that experiences episodes of elevated turbidity caused by runoff events and exacerbated by drawdown. Model predictions of bed stress attributed to currents are validated by using measurements obtained from acoustic Doppler instrumentation. The surface wave component of the model is established on a framework that has been previously validated for Schoharie Reservoir. Testing of the enhanced turbidity component of W2Tn was completed for a 3.5-year period of historical observations, which included a number of runoff events covering a range of severity and variations in reservoir drawdown. The enhanced model performed well in simulating observed conditions in the water column. The resuspension mechanism made a significant contribution to the predicted turbidity during periods of reservoir drawdown and during a severe runoff event. The model also performed well in simulating the observed turbidity of the drinking water withdrawal. Resuspension of particles contributing to turbidity was largely attributable to reservoir currents with surface wave-induced resuspension playing a smaller role. The potential application of this model to other water bodies and water quality issues is discussed.
    publisherAmerican Society of Civil Engineers
    titleModeling Resuspension in a Dynamic Water Supply Reservoir
    typeJournal Paper
    journal volume137
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000358
    treeJournal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian