YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Properties of Biofouled Membranes from a Submerged Anaerobic Membrane Bioreactor after Cleaning

    Source: Journal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 006
    Author:
    Basuvaraj Mahendran
    ,
    Hongjun Lin
    ,
    Baoqiang Liao
    ,
    Steven N. Liss
    DOI: 10.1061/(ASCE)EE.1943-7870.0000341
    Publisher: American Society of Civil Engineers
    Abstract: The surface structural properties of biofouled membranes from a laboratory-scale submerged anaerobic membrane bioreactor (SAnMBR) treating kraft pulping evaporator condensate after cleaning were studied. A flat sheet polyvinylidene fluoride (PVDF) membrane was used for the study. Three different cleaning methods, physical cleaning (PC), maintenance chemical cleaning (MCC), and recovery cleaning (RC) were applied to the fouled membrane surface, and the treated membranes were subject to flux recovery and surface structural analysis by using spectroscopic methods, zeta potential measurement, attenuated total reflectance-Fourier transform infra red spectroscopy (ATR-FTIR), and advanced correlative microscopic methods, including confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Neither PC, MCC, nor RC methods restored the membrane permeability to initial conditions. Adhesion of a thin extracellular polymeric substance (EPS) layer, consisting of proteins and polysaccharides with a thicknesses of 4.0 µm, 5.3 µm, and 7.1 µm and roughness of 190 nm, 236 nm, and 273 nm was observed on RC, MCC, and PC treated membrane surfaces, respectively. Partial flux recovery was achieved with the MCC and RC methods. This was correlated to the reduction of the protein associated with the foulant. Polysaccharides were found to be the most stable and predominant EPS constituent in relation to protein on the biofouled layer of RC and MCC membrane surfaces.
    • Download: (424.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Properties of Biofouled Membranes from a Submerged Anaerobic Membrane Bioreactor after Cleaning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59760
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorBasuvaraj Mahendran
    contributor authorHongjun Lin
    contributor authorBaoqiang Liao
    contributor authorSteven N. Liss
    date accessioned2017-05-08T21:41:50Z
    date available2017-05-08T21:41:50Z
    date copyrightJune 2011
    date issued2011
    identifier other%28asce%29ee%2E1943-7870%2E0000349.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59760
    description abstractThe surface structural properties of biofouled membranes from a laboratory-scale submerged anaerobic membrane bioreactor (SAnMBR) treating kraft pulping evaporator condensate after cleaning were studied. A flat sheet polyvinylidene fluoride (PVDF) membrane was used for the study. Three different cleaning methods, physical cleaning (PC), maintenance chemical cleaning (MCC), and recovery cleaning (RC) were applied to the fouled membrane surface, and the treated membranes were subject to flux recovery and surface structural analysis by using spectroscopic methods, zeta potential measurement, attenuated total reflectance-Fourier transform infra red spectroscopy (ATR-FTIR), and advanced correlative microscopic methods, including confocal laser scanning microscopy (CLSM), atomic force microscopy (AFM), and scanning electron microscopy (SEM). Neither PC, MCC, nor RC methods restored the membrane permeability to initial conditions. Adhesion of a thin extracellular polymeric substance (EPS) layer, consisting of proteins and polysaccharides with a thicknesses of 4.0 µm, 5.3 µm, and 7.1 µm and roughness of 190 nm, 236 nm, and 273 nm was observed on RC, MCC, and PC treated membrane surfaces, respectively. Partial flux recovery was achieved with the MCC and RC methods. This was correlated to the reduction of the protein associated with the foulant. Polysaccharides were found to be the most stable and predominant EPS constituent in relation to protein on the biofouled layer of RC and MCC membrane surfaces.
    publisherAmerican Society of Civil Engineers
    titleSurface Properties of Biofouled Membranes from a Submerged Anaerobic Membrane Bioreactor after Cleaning
    typeJournal Paper
    journal volume137
    journal issue6
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000341
    treeJournal of Environmental Engineering:;2011:;Volume ( 137 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian