YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transport and Distribution of Particulate Matter Phosphorus Fractions in Rainfall-Runoff from Roadway Source Areas

    Source: Journal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    Jia Ma
    ,
    Gaoxiang Ying
    ,
    John J. Sansalone
    DOI: 10.1061/(ASCE)EE.1943-7870.0000263
    Publisher: American Society of Civil Engineers
    Abstract: During runoff transport, phosphorus (P) partitions between dissolved and particulate matter (PM) phases. PM-based P distributes across the particle-size distribution (PSD). This study investigates the transport and distribution for P and PM in runoff from a fully paved highway watershed in Baton Rouge, La. Eight events with discrete manual runoff sampling are studied. PSDs are modeled with a cumulative gamma distribution and PM-based P distributions are modeled with a Freundlich-type power law. P and PM fractions examined are dissolved, suspended, settleable, and sediment. Measured mass transport of these fractions is modeled based on flow-limited (zero-order) or mass-limited (first-order) delivery. Results demonstrate that transport of each fraction can be represented by these limiting categories, but fractions illustrate differing elution rates during the same event. Event-based signatures for PM or P are controlled by the fraction that dominates the transported mass. Even for small source area catchments such as roadways without complex flow patterns, where first-order transport should dominate, transport of P and PM fractions is not consistently first-order; exceptions are mainly dissolved and suspended fractions. A water quality volume (WQV) for 25 mm of runoff resulted in 100% capture for all fractions of seven events and significant bypass for all fractions of a single event with a 1-year return frequency. By contrast, a WQV of 5 mm of runoff resulted in significant bypass for most fractions for seven events and 100% capture for the single event of the lowest runoff volume.
    • Download: (240.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transport and Distribution of Particulate Matter Phosphorus Fractions in Rainfall-Runoff from Roadway Source Areas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59674
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJia Ma
    contributor authorGaoxiang Ying
    contributor authorJohn J. Sansalone
    date accessioned2017-05-08T21:41:44Z
    date available2017-05-08T21:41:44Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29ee%2E1943-7870%2E0000272.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59674
    description abstractDuring runoff transport, phosphorus (P) partitions between dissolved and particulate matter (PM) phases. PM-based P distributes across the particle-size distribution (PSD). This study investigates the transport and distribution for P and PM in runoff from a fully paved highway watershed in Baton Rouge, La. Eight events with discrete manual runoff sampling are studied. PSDs are modeled with a cumulative gamma distribution and PM-based P distributions are modeled with a Freundlich-type power law. P and PM fractions examined are dissolved, suspended, settleable, and sediment. Measured mass transport of these fractions is modeled based on flow-limited (zero-order) or mass-limited (first-order) delivery. Results demonstrate that transport of each fraction can be represented by these limiting categories, but fractions illustrate differing elution rates during the same event. Event-based signatures for PM or P are controlled by the fraction that dominates the transported mass. Even for small source area catchments such as roadways without complex flow patterns, where first-order transport should dominate, transport of P and PM fractions is not consistently first-order; exceptions are mainly dissolved and suspended fractions. A water quality volume (WQV) for 25 mm of runoff resulted in 100% capture for all fractions of seven events and significant bypass for all fractions of a single event with a 1-year return frequency. By contrast, a WQV of 5 mm of runoff resulted in significant bypass for most fractions for seven events and 100% capture for the single event of the lowest runoff volume.
    publisherAmerican Society of Civil Engineers
    titleTransport and Distribution of Particulate Matter Phosphorus Fractions in Rainfall-Runoff from Roadway Source Areas
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000263
    treeJournal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian