YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evidence and Long-Term Feasibility of Enhanced Biological Phosphorus Removal in Oxidation-Ditch Type of Aerated-Anoxic Activated Sludge Systems

    Source: Journal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 011
    Author:
    Tania Datta
    ,
    Ramesh Goel
    DOI: 10.1061/(ASCE)EE.1943-7870.0000259
    Publisher: American Society of Civil Engineers
    Abstract: This study investigated the potential of four full-scale oxidation ditches to accomplish enhanced biological phosphorus removal (EBPR). Despite the fact that none of the tested oxidation ditches were designed to perform EBPR, mixed liquors from all four ditches showed good specific phosphorus release and uptake rates, a typical characteristic of a typical EBPR biomass. The specific phosphorus release rates ranged from 0.042- to 0.254-mg P/mg VSS-d and the specific phosphorus uptake rates ranged from 0.023- to 0.125-mg P/mg VSS-d for the tested full-scale plants. The EBPR potential of one of the full-scale plants (Central Davis Sewer District) was further studied by changing the aeration patterns in the ditch. The mixed liquor in this full-scale plant exhibited good phosphorus release and uptake trends and dissolved phosphorus, as low as 1.26 mg/L, could be accomplished in the final effluent of this plant as a result of this optimization. The long-term feasibility of the EBPR in this full-scale was tested by running a bench-scale EBPR reactor, in which the anaerobic phase was replaced with aerated-anaerobic phase to simulate the mixed liquor environment that exists in Central Davis mixed liquor and, in general, in all oxidation-ditch-type activated sludge configurations. The bench-scale reactor showed consistent EBPR activity in the absence of an anaerobic environment and more than 85% phosphorus removal could be maintained in the reactor for more than 400 days. The intrafloc microanaerobic/anoxic zones, which may be present in the mixed liquor, did not seem to add to the EBPR efficiency under aerated-anaerobic conditions. Cloning and sequencing using
    • Download: (232.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evidence and Long-Term Feasibility of Enhanced Biological Phosphorus Removal in Oxidation-Ditch Type of Aerated-Anoxic Activated Sludge Systems

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59670
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorTania Datta
    contributor authorRamesh Goel
    date accessioned2017-05-08T21:41:44Z
    date available2017-05-08T21:41:44Z
    date copyrightNovember 2010
    date issued2010
    identifier other%28asce%29ee%2E1943-7870%2E0000268.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59670
    description abstractThis study investigated the potential of four full-scale oxidation ditches to accomplish enhanced biological phosphorus removal (EBPR). Despite the fact that none of the tested oxidation ditches were designed to perform EBPR, mixed liquors from all four ditches showed good specific phosphorus release and uptake rates, a typical characteristic of a typical EBPR biomass. The specific phosphorus release rates ranged from 0.042- to 0.254-mg P/mg VSS-d and the specific phosphorus uptake rates ranged from 0.023- to 0.125-mg P/mg VSS-d for the tested full-scale plants. The EBPR potential of one of the full-scale plants (Central Davis Sewer District) was further studied by changing the aeration patterns in the ditch. The mixed liquor in this full-scale plant exhibited good phosphorus release and uptake trends and dissolved phosphorus, as low as 1.26 mg/L, could be accomplished in the final effluent of this plant as a result of this optimization. The long-term feasibility of the EBPR in this full-scale was tested by running a bench-scale EBPR reactor, in which the anaerobic phase was replaced with aerated-anaerobic phase to simulate the mixed liquor environment that exists in Central Davis mixed liquor and, in general, in all oxidation-ditch-type activated sludge configurations. The bench-scale reactor showed consistent EBPR activity in the absence of an anaerobic environment and more than 85% phosphorus removal could be maintained in the reactor for more than 400 days. The intrafloc microanaerobic/anoxic zones, which may be present in the mixed liquor, did not seem to add to the EBPR efficiency under aerated-anaerobic conditions. Cloning and sequencing using
    publisherAmerican Society of Civil Engineers
    titleEvidence and Long-Term Feasibility of Enhanced Biological Phosphorus Removal in Oxidation-Ditch Type of Aerated-Anoxic Activated Sludge Systems
    typeJournal Paper
    journal volume136
    journal issue11
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000259
    treeJournal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian