YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    New Approach to Evaluate Pollutant Removal by Storm-Water Treatment Devices

    Source: Journal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 004
    Author:
    Daniel P. Smith
    DOI: 10.1061/(ASCE)EE.1943-7870.0000174
    Publisher: American Society of Civil Engineers
    Abstract: A methodology was developed to monitor and evaluate the removal of solids and associated constituents by a nutrient separating baffle box (NSBB) storm-water treatment device treating runoff from a 4.3 ha (10.6 acre) residential watershed discharging into the Indian River Lagoon, Florida. The NSBB was monitored over a 359-day time period using autosamplers to quantify water column removal during runoff events, and by quantifying and analyzing solids that accumulated within the NSBB. Flow composited influent and effluent samples were collected to represent water column performance. Event mean concentration (EMC) reduction was moderate (mean: 17%) and variable (range: −39 to 68%) for suspended solids, and negative for nitrogen, phosphorus, fecal coliforms chromium, and copper. The mass of solids that accumulated in bottom chambers and in a strainer screen was quantified and analyzed for nitrogen, phosphorus, heavy metals, and polycyclic aromatic hydrocarbons. A quantitative evaluative framework was devised to estimate the total pollutant mass removal by NSBB, which consisted of the summation of the separately calculated mass removals for water column, bottom chamber material, and strainer screen material. The water column accounted for only 4% of total solids that accumulated in the NSBB, which was equally divided between bottom chamber and strainer screen. Removal of nitrogen, phosphorus, and metals could be accounted for only by considering mass accumulations. Results suggest that overall assessment of pollutant removal by NSBB must be cognizant of the materials not captured by typical autosamplers: larger size sediment particles, large floating and suspended matter, and the pollutants associated with these materials. Using water column EMCs as the sole measure of performance significantly underestimated loading reduction of storm-water constituents by the NSBB. The monitoring and evaluative methodology applied to the NSBB may be applicable to load reduction evaluations for other storm-water treatment devices with a similar function.
    • Download: (982.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      New Approach to Evaluate Pollutant Removal by Storm-Water Treatment Devices

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59580
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorDaniel P. Smith
    date accessioned2017-05-08T21:41:35Z
    date available2017-05-08T21:41:35Z
    date copyrightApril 2010
    date issued2010
    identifier other%28asce%29ee%2E1943-7870%2E0000182.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59580
    description abstractA methodology was developed to monitor and evaluate the removal of solids and associated constituents by a nutrient separating baffle box (NSBB) storm-water treatment device treating runoff from a 4.3 ha (10.6 acre) residential watershed discharging into the Indian River Lagoon, Florida. The NSBB was monitored over a 359-day time period using autosamplers to quantify water column removal during runoff events, and by quantifying and analyzing solids that accumulated within the NSBB. Flow composited influent and effluent samples were collected to represent water column performance. Event mean concentration (EMC) reduction was moderate (mean: 17%) and variable (range: −39 to 68%) for suspended solids, and negative for nitrogen, phosphorus, fecal coliforms chromium, and copper. The mass of solids that accumulated in bottom chambers and in a strainer screen was quantified and analyzed for nitrogen, phosphorus, heavy metals, and polycyclic aromatic hydrocarbons. A quantitative evaluative framework was devised to estimate the total pollutant mass removal by NSBB, which consisted of the summation of the separately calculated mass removals for water column, bottom chamber material, and strainer screen material. The water column accounted for only 4% of total solids that accumulated in the NSBB, which was equally divided between bottom chamber and strainer screen. Removal of nitrogen, phosphorus, and metals could be accounted for only by considering mass accumulations. Results suggest that overall assessment of pollutant removal by NSBB must be cognizant of the materials not captured by typical autosamplers: larger size sediment particles, large floating and suspended matter, and the pollutants associated with these materials. Using water column EMCs as the sole measure of performance significantly underestimated loading reduction of storm-water constituents by the NSBB. The monitoring and evaluative methodology applied to the NSBB may be applicable to load reduction evaluations for other storm-water treatment devices with a similar function.
    publisherAmerican Society of Civil Engineers
    titleNew Approach to Evaluate Pollutant Removal by Storm-Water Treatment Devices
    typeJournal Paper
    journal volume136
    journal issue4
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0000174
    treeJournal of Environmental Engineering:;2010:;Volume ( 136 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian