YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Damage Identification Scheme Based on Compressive Sensing

    Source: Journal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 002
    Author:
    Ying Wang
    ,
    Hong Hao
    DOI: 10.1061/(ASCE)CP.1943-5487.0000324
    Publisher: American Society of Civil Engineers
    Abstract: Civil infrastructures are critical to every nation, due to their substantial investment, long service period, and enormous negative impacts after failure. However, they inevitably deteriorate during their service lives. Therefore, methods capable of assessing conditions and identifying damage in a structure timely and accurately have drawn increasing attention. Recently, compressive sensing (CS), a significant breakthrough in signal processing, has been proposed to capture and represent compressible signals at a rate significantly below the traditional Nyquist rate. Due to its sound theoretical background and notable influence, this methodology has been successfully applied in many research areas. In order to explore its application in structural damage identification, a new CS-based damage identification scheme is proposed in this paper, by regarding damage identification problems as pattern classification problems. The time domain structural responses are transferred to the frequency domain as sparse representation, and then the numerical simulated data under various damage scenarios will be used to train a feature matrix as input information. This matrix can be used for damage identification through an optimization process. This will be one of the first few applications of this advanced technique to structural engineering areas. In order to demonstrate its effectiveness, numerical simulation results on a complex pipe soil interaction model are used to train the parameters and then to identify the simulated pipe degradation damage and free-spanning damage. To further demonstrate the method, vibration tests of a steel pipe laid on the ground are carried out. The measured acceleration time histories are used for damage identification. Both numerical and experimental verification results confirm that the proposed damage identification scheme will be a promising tool for structural health monitoring.
    • Download: (13.81Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Damage Identification Scheme Based on Compressive Sensing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59306
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorYing Wang
    contributor authorHong Hao
    date accessioned2017-05-08T21:40:59Z
    date available2017-05-08T21:40:59Z
    date copyrightMarch 2015
    date issued2015
    identifier other%28asce%29cp%2E1943-5487%2E0000334.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59306
    description abstractCivil infrastructures are critical to every nation, due to their substantial investment, long service period, and enormous negative impacts after failure. However, they inevitably deteriorate during their service lives. Therefore, methods capable of assessing conditions and identifying damage in a structure timely and accurately have drawn increasing attention. Recently, compressive sensing (CS), a significant breakthrough in signal processing, has been proposed to capture and represent compressible signals at a rate significantly below the traditional Nyquist rate. Due to its sound theoretical background and notable influence, this methodology has been successfully applied in many research areas. In order to explore its application in structural damage identification, a new CS-based damage identification scheme is proposed in this paper, by regarding damage identification problems as pattern classification problems. The time domain structural responses are transferred to the frequency domain as sparse representation, and then the numerical simulated data under various damage scenarios will be used to train a feature matrix as input information. This matrix can be used for damage identification through an optimization process. This will be one of the first few applications of this advanced technique to structural engineering areas. In order to demonstrate its effectiveness, numerical simulation results on a complex pipe soil interaction model are used to train the parameters and then to identify the simulated pipe degradation damage and free-spanning damage. To further demonstrate the method, vibration tests of a steel pipe laid on the ground are carried out. The measured acceleration time histories are used for damage identification. Both numerical and experimental verification results confirm that the proposed damage identification scheme will be a promising tool for structural health monitoring.
    publisherAmerican Society of Civil Engineers
    titleDamage Identification Scheme Based on Compressive Sensing
    typeJournal Paper
    journal volume29
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000324
    treeJournal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian