YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Backcalculation of Flexible Pavement Structural Properties Using a Restart Covariance Matrix Adaptation Evolution Strategy

    Source: Journal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 002
    Author:
    Nima Kargah-Ostadi
    ,
    Shelley M. Stoffels
    DOI: 10.1061/(ASCE)CP.1943-5487.0000309
    Publisher: American Society of Civil Engineers
    Abstract: Monitoring structural integrity of pavements is a central task of pavement management systems toward needs analysis and the subsequent design, prioritization, and optimization of pavement maintenance and rehabilitation projects. Nondestructive testing (NDT) methods, including falling weight deflectometer (FWD), are the most widely used monitoring approach. The FWD device creates an impulse load on the pavement surface, and the resulting pavement surface deflections are captured using geophones at a number of distances from the load. Various backcalculation methods have been proposed to calculate pavement structural properties from FWD surface deflection measurements. However, no unique technique has proved to yield a globally optimum solution to this complex, nondifferentiable problem. This study explores development of an effective and reliable backcalculation strategy with attention to variable layer thicknesses. A synthetic database of typical three-layer flexible pavement structures is created by a three-dimensional finite-element method (FEM) program. To replace computationally intensive FEM routines, artificial neural networks (ANNs)—massively parallel computing systems—are trained and tested using the synthetic data. To minimize the error between the FWD-measured deflections and ANN-calculated deflections, a restart covariance matrix adaptation evolution strategy (CMA-ES) is implemented. This strategy is superior to most available evolutionary algorithms (EAs) in efficient, effective, and reliable optimization of complex test functions. Testing of the developed methodology (RCMA-BC) on the synthetic database demonstrates its effectiveness and reliability in backcalculating moduli and surface layer thickness. However, RCMA-BC cannot reliably backcalculate base thickness because the forward calculation routine does not have significant sensitivity to this parameter. Additionally, the RCMA-BC models and backcalculation software are applied to data from the Federal Highway Administration (FHWA) Long-Term Pavement Performance (LTPP) database; RCMA-BC exhibits consistently lower errors in deflections. The RCMA-BC backcalculation results are demonstrated to be independent of seed values. The backcalculated layer thicknesses are also compared to available ground-penetrating radar (GPR) and coring information, showing better agreement of results on thinner surface layers within the considered pavement sections.
    • Download: (7.609Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Backcalculation of Flexible Pavement Structural Properties Using a Restart Covariance Matrix Adaptation Evolution Strategy

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59292
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorNima Kargah-Ostadi
    contributor authorShelley M. Stoffels
    date accessioned2017-05-08T21:40:57Z
    date available2017-05-08T21:40:57Z
    date copyrightMarch 2015
    date issued2015
    identifier other%28asce%29cp%2E1943-5487%2E0000317.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59292
    description abstractMonitoring structural integrity of pavements is a central task of pavement management systems toward needs analysis and the subsequent design, prioritization, and optimization of pavement maintenance and rehabilitation projects. Nondestructive testing (NDT) methods, including falling weight deflectometer (FWD), are the most widely used monitoring approach. The FWD device creates an impulse load on the pavement surface, and the resulting pavement surface deflections are captured using geophones at a number of distances from the load. Various backcalculation methods have been proposed to calculate pavement structural properties from FWD surface deflection measurements. However, no unique technique has proved to yield a globally optimum solution to this complex, nondifferentiable problem. This study explores development of an effective and reliable backcalculation strategy with attention to variable layer thicknesses. A synthetic database of typical three-layer flexible pavement structures is created by a three-dimensional finite-element method (FEM) program. To replace computationally intensive FEM routines, artificial neural networks (ANNs)—massively parallel computing systems—are trained and tested using the synthetic data. To minimize the error between the FWD-measured deflections and ANN-calculated deflections, a restart covariance matrix adaptation evolution strategy (CMA-ES) is implemented. This strategy is superior to most available evolutionary algorithms (EAs) in efficient, effective, and reliable optimization of complex test functions. Testing of the developed methodology (RCMA-BC) on the synthetic database demonstrates its effectiveness and reliability in backcalculating moduli and surface layer thickness. However, RCMA-BC cannot reliably backcalculate base thickness because the forward calculation routine does not have significant sensitivity to this parameter. Additionally, the RCMA-BC models and backcalculation software are applied to data from the Federal Highway Administration (FHWA) Long-Term Pavement Performance (LTPP) database; RCMA-BC exhibits consistently lower errors in deflections. The RCMA-BC backcalculation results are demonstrated to be independent of seed values. The backcalculated layer thicknesses are also compared to available ground-penetrating radar (GPR) and coring information, showing better agreement of results on thinner surface layers within the considered pavement sections.
    publisherAmerican Society of Civil Engineers
    titleBackcalculation of Flexible Pavement Structural Properties Using a Restart Covariance Matrix Adaptation Evolution Strategy
    typeJournal Paper
    journal volume29
    journal issue2
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000309
    treeJournal of Computing in Civil Engineering:;2015:;Volume ( 029 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian