YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Mathematical Modeling of an Isothermal Three-Phase Reactor: Model Development and Validation

    Source: Journal of Environmental Engineering:;2003:;Volume ( 129 ):;issue: 007
    Author:
    J. Yang
    ,
    D. W. Hand
    ,
    J. C. Crittenden
    ,
    D. R. Hokanson
    ,
    E. J. Oman
    ,
    D. Audeves
    DOI: 10.1061/(ASCE)0733-9372(2003)129:7(586)
    Publisher: American Society of Civil Engineers
    Abstract: A catalytic reactor model (CatReac) that describes the transport and series reactions of compounds in a three-phase fixed-bed catalytic reactor is developed for the purpose of describing the volatile assembly reactor system within the potable water processor on-board the International Space Station. CatReac includes these mechanisms: advective flow, axial dispersion, gas-to-liquid and liquid-to-solid mass transport, intraparticle mass transport with pore and surface diffusion, and series reactions of multiple compounds. A dimensional analysis of CatReac revealed the following seven dimensionless groups may be used to determine the controlling transport and/or reaction mechanisms: (1) the Peclet number is the ratio of the advective to the dispersive transport; (2) the Stanton number is the ratio of the external mass transfer rate to the advective rate; (3) the Damköhler number compares the reaction rate to the advective transport rate; (4) the surface diffusion ratio equals the rate of transport by surface diffusion divided by the rate of transport by advection; (5) the pore diffusion modulus is the ratio of the rate of transport by pore diffusion to the rate of transport by advection; (6) the ratio of the gas to liquid advective rates; and, (7) the Biot numbers for surface and pore diffusion compare the external mass transfer rate to the intraparticle mass transfer rate. These dimensionless numbers are used to evaluate the impacts of the different mechanisms on the overall performance of the reactor. The numerical solution using orthogonal collocation was validated for a wide range of controlling mechanisms by comparing model simulations with several analytical solutions: (1) Gas-to-Liquid mass transfer controlling the overall mass transfer-reaction mechanisms, for a wide range of Pe number values; (2) Liquid-phase dispersion controlling the overall process; (3) Liquid-to-solid mass transfer resistance controlling the overall mass transfer-reaction process; (4) Reactions in series with two possibilities (4a): No intraparticle mass transfer resistance, and (4b): Significant intraparticle mass transfer resistance; (5) Langmuir isotherm (5a): single compound, no mass transfer resistance, and (5b): multicomponent competitive adsorption without mass transfer resistance; (6) Unsteady state operation: Plug flow with mass transfer and no reaction. These validations systematically examine all the mechanisms that are included in the general model and examine the model limitations based on the controlling mechanisms.
    • Download: (134.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Mathematical Modeling of an Isothermal Three-Phase Reactor: Model Development and Validation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59109
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJ. Yang
    contributor authorD. W. Hand
    contributor authorJ. C. Crittenden
    contributor authorD. R. Hokanson
    contributor authorE. J. Oman
    contributor authorD. Audeves
    date accessioned2017-05-08T21:40:27Z
    date available2017-05-08T21:40:27Z
    date copyrightJuly 2003
    date issued2003
    identifier other%28asce%290733-9372%282003%29129%3A7%28586%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59109
    description abstractA catalytic reactor model (CatReac) that describes the transport and series reactions of compounds in a three-phase fixed-bed catalytic reactor is developed for the purpose of describing the volatile assembly reactor system within the potable water processor on-board the International Space Station. CatReac includes these mechanisms: advective flow, axial dispersion, gas-to-liquid and liquid-to-solid mass transport, intraparticle mass transport with pore and surface diffusion, and series reactions of multiple compounds. A dimensional analysis of CatReac revealed the following seven dimensionless groups may be used to determine the controlling transport and/or reaction mechanisms: (1) the Peclet number is the ratio of the advective to the dispersive transport; (2) the Stanton number is the ratio of the external mass transfer rate to the advective rate; (3) the Damköhler number compares the reaction rate to the advective transport rate; (4) the surface diffusion ratio equals the rate of transport by surface diffusion divided by the rate of transport by advection; (5) the pore diffusion modulus is the ratio of the rate of transport by pore diffusion to the rate of transport by advection; (6) the ratio of the gas to liquid advective rates; and, (7) the Biot numbers for surface and pore diffusion compare the external mass transfer rate to the intraparticle mass transfer rate. These dimensionless numbers are used to evaluate the impacts of the different mechanisms on the overall performance of the reactor. The numerical solution using orthogonal collocation was validated for a wide range of controlling mechanisms by comparing model simulations with several analytical solutions: (1) Gas-to-Liquid mass transfer controlling the overall mass transfer-reaction mechanisms, for a wide range of Pe number values; (2) Liquid-phase dispersion controlling the overall process; (3) Liquid-to-solid mass transfer resistance controlling the overall mass transfer-reaction process; (4) Reactions in series with two possibilities (4a): No intraparticle mass transfer resistance, and (4b): Significant intraparticle mass transfer resistance; (5) Langmuir isotherm (5a): single compound, no mass transfer resistance, and (5b): multicomponent competitive adsorption without mass transfer resistance; (6) Unsteady state operation: Plug flow with mass transfer and no reaction. These validations systematically examine all the mechanisms that are included in the general model and examine the model limitations based on the controlling mechanisms.
    publisherAmerican Society of Civil Engineers
    titleDynamic Mathematical Modeling of an Isothermal Three-Phase Reactor: Model Development and Validation
    typeJournal Paper
    journal volume129
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2003)129:7(586)
    treeJournal of Environmental Engineering:;2003:;Volume ( 129 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian