YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    REILP Approach for Uncertainty-Based Decision Making in Civil Engineering

    Source: Journal of Computing in Civil Engineering:;2010:;Volume ( 024 ):;issue: 004
    Author:
    Rui Zou
    ,
    Yong Liu
    ,
    Lei Liu
    ,
    Huaicheng Guo
    DOI: 10.1061/(ASCE)CP.1943-5487.0000037
    Publisher: American Society of Civil Engineers
    Abstract: The civil and environmental decision-making processes are plagued with uncertain, vague, and incomplete information. Interval linear programming (ILP) is a widely applied mathematical programming method in assisting civil and environmental decision making under uncertainty. However, the existing ILP decision approach is found to be ineffective in generating operational schemes for practical decision support due to a lack of linkage between decision risk and system return. In addition, the interpretation of the ILP solutions represented as the lower and upper bounds of decision variables can cause problems of infeasibility and nonoptimality in the resulted implementation schemes. This study proposed a risk explicit ILP (REILP) approach to overcome the limitations of existing ILP approaches. The REILP explicitly reflects the tradeoffs between risk and system return for a decision-making problem under an interval-type uncertainty environment. A risk function was defined to enable finding solutions which maximize system return while minimizing system risk, hence leading to crisp solutions that are feasible and optimal for practical decision making. A numerical experiment on land-use decision making under total maximum daily load was conducted to illustrate the REILP approach. The model results show that the REILP approach is able to efficiently explore the interval uncertainty space and generate an optimal decision front that directly reflects the tradeoff between decision risks and system return, allowing decision makers to make effective decision based on the risk-reward information generated by the REILP modeling analysis.
    • Download: (1.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      REILP Approach for Uncertainty-Based Decision Making in Civil Engineering

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/59002
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorRui Zou
    contributor authorYong Liu
    contributor authorLei Liu
    contributor authorHuaicheng Guo
    date accessioned2017-05-08T21:40:16Z
    date available2017-05-08T21:40:16Z
    date copyrightJuly 2010
    date issued2010
    identifier other%28asce%29cp%2E1943-5487%2E0000044.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/59002
    description abstractThe civil and environmental decision-making processes are plagued with uncertain, vague, and incomplete information. Interval linear programming (ILP) is a widely applied mathematical programming method in assisting civil and environmental decision making under uncertainty. However, the existing ILP decision approach is found to be ineffective in generating operational schemes for practical decision support due to a lack of linkage between decision risk and system return. In addition, the interpretation of the ILP solutions represented as the lower and upper bounds of decision variables can cause problems of infeasibility and nonoptimality in the resulted implementation schemes. This study proposed a risk explicit ILP (REILP) approach to overcome the limitations of existing ILP approaches. The REILP explicitly reflects the tradeoffs between risk and system return for a decision-making problem under an interval-type uncertainty environment. A risk function was defined to enable finding solutions which maximize system return while minimizing system risk, hence leading to crisp solutions that are feasible and optimal for practical decision making. A numerical experiment on land-use decision making under total maximum daily load was conducted to illustrate the REILP approach. The model results show that the REILP approach is able to efficiently explore the interval uncertainty space and generate an optimal decision front that directly reflects the tradeoff between decision risks and system return, allowing decision makers to make effective decision based on the risk-reward information generated by the REILP modeling analysis.
    publisherAmerican Society of Civil Engineers
    titleREILP Approach for Uncertainty-Based Decision Making in Civil Engineering
    typeJournal Paper
    journal volume24
    journal issue4
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000037
    treeJournal of Computing in Civil Engineering:;2010:;Volume ( 024 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian