YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Computing in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Image-Based Machine Learning for Reduction of User Fatigue in an Interactive Model Calibration System

    Source: Journal of Computing in Civil Engineering:;2010:;Volume ( 024 ):;issue: 003
    Author:
    Abhishek Singh
    ,
    Barbara S. Minsker
    ,
    Peter Bajcsy
    DOI: 10.1061/(ASCE)CP.1943-5487.0000026
    Publisher: American Society of Civil Engineers
    Abstract: The interactive multiobjective genetic algorithm (IMOGA) is a promising new approach to calibrate models. The IMOGA combines traditional optimization with an interactive framework, thus allowing both quantitative calibration criteria as well as the subjective knowledge of experts to drive the search for model parameters. One of the major challenges in using such interactive systems is the burden they impose on the experts that interact with the system. This paper proposes the use of a novel
    • Download: (1.138Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Image-Based Machine Learning for Reduction of User Fatigue in an Interactive Model Calibration System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/58991
    Collections
    • Journal of Computing in Civil Engineering

    Show full item record

    contributor authorAbhishek Singh
    contributor authorBarbara S. Minsker
    contributor authorPeter Bajcsy
    date accessioned2017-05-08T21:40:16Z
    date available2017-05-08T21:40:16Z
    date copyrightMay 2010
    date issued2010
    identifier other%28asce%29cp%2E1943-5487%2E0000034.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/58991
    description abstractThe interactive multiobjective genetic algorithm (IMOGA) is a promising new approach to calibrate models. The IMOGA combines traditional optimization with an interactive framework, thus allowing both quantitative calibration criteria as well as the subjective knowledge of experts to drive the search for model parameters. One of the major challenges in using such interactive systems is the burden they impose on the experts that interact with the system. This paper proposes the use of a novel
    publisherAmerican Society of Civil Engineers
    titleImage-Based Machine Learning for Reduction of User Fatigue in an Interactive Model Calibration System
    typeJournal Paper
    journal volume24
    journal issue3
    journal titleJournal of Computing in Civil Engineering
    identifier doi10.1061/(ASCE)CP.1943-5487.0000026
    treeJournal of Computing in Civil Engineering:;2010:;Volume ( 024 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian