YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Integrated Prefabrication Configuration and Component Grouping for Resource Optimization of Precast Production

    Source: Journal of Construction Engineering and Management:;2014:;Volume ( 140 ):;issue: 002
    Author:
    A. Khalili
    ,
    D. K. Chua
    DOI: 10.1061/(ASCE)CO.1943-7862.0000798
    Publisher: American Society of Civil Engineers
    Abstract: It may be possible to reduce uncertainty in construction projects by adopting the prefabrication method. In this method, components are produced in factories and transported to the construction site to satisfy installation demands. For successful and effective prefabrication, the project designer and precaster must develop an integrated plan to manage the available resources in a way that satisfies design flexibility, production constraints, and installation demands. Configuring individual building elements and forming building components or modular units will result in employing a higher degree of prefabrication for higher productivity and ease of construction. The production of such complex configurations requires complex molds. To achieve optimization of resources and costs for the precast production of complex configurations, two new ideas have been adopted: namely prefabrication configuration and component groups; these are incorporated into the mixed integer linear programming (MILP) model. Moreover, an integrated plan is developed to efficiently utilize complex molds in production platform by using a mold adaptability matrix. Based on these concepts, an MILP optimization model is developed to adopt appropriate molds and create an optimal production plan. The model is validated by using two examples with different scenarios. The results show that employing the idea of prefabrication configuration and component grouping in production planning for prefabricated structures can reduce total costs by up to 13% compared to the existing planning approach. The developed model should help prefabrication manufacturers better manage their resources and possibly expand their production capacity.
    • Download: (185.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Integrated Prefabrication Configuration and Component Grouping for Resource Optimization of Precast Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/58957
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorA. Khalili
    contributor authorD. K. Chua
    date accessioned2017-05-08T21:40:13Z
    date available2017-05-08T21:40:13Z
    date copyrightFebruary 2014
    date issued2014
    identifier other%28asce%29co%2E1943-7862%2E0000805.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/58957
    description abstractIt may be possible to reduce uncertainty in construction projects by adopting the prefabrication method. In this method, components are produced in factories and transported to the construction site to satisfy installation demands. For successful and effective prefabrication, the project designer and precaster must develop an integrated plan to manage the available resources in a way that satisfies design flexibility, production constraints, and installation demands. Configuring individual building elements and forming building components or modular units will result in employing a higher degree of prefabrication for higher productivity and ease of construction. The production of such complex configurations requires complex molds. To achieve optimization of resources and costs for the precast production of complex configurations, two new ideas have been adopted: namely prefabrication configuration and component groups; these are incorporated into the mixed integer linear programming (MILP) model. Moreover, an integrated plan is developed to efficiently utilize complex molds in production platform by using a mold adaptability matrix. Based on these concepts, an MILP optimization model is developed to adopt appropriate molds and create an optimal production plan. The model is validated by using two examples with different scenarios. The results show that employing the idea of prefabrication configuration and component grouping in production planning for prefabricated structures can reduce total costs by up to 13% compared to the existing planning approach. The developed model should help prefabrication manufacturers better manage their resources and possibly expand their production capacity.
    publisherAmerican Society of Civil Engineers
    titleIntegrated Prefabrication Configuration and Component Grouping for Resource Optimization of Precast Production
    typeJournal Paper
    journal volume140
    journal issue2
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0000798
    treeJournal of Construction Engineering and Management:;2014:;Volume ( 140 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian