YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Stochastic Time-Cost-Resource Utilization Optimization Using Nondominated Sorting Genetic Algorithm and Discrete Fuzzy Sets

    Source: Journal of Construction Engineering and Management:;2009:;Volume ( 135 ):;issue: 011
    Author:
    Banafsheh Zahraie
    ,
    Mehdi Tavakolan
    DOI: 10.1061/(ASCE)CO.1943-7862.0000092
    Publisher: American Society of Civil Engineers
    Abstract: In a construction project, the cost and duration of activities could change due to different uncertain variables such as weather, resource availability, etc. Resource leveling and allocation strategies also influence total time and costs of projects. In this paper, two concepts of time-cost trade-off and resource leveling and allocation have been embedded in a stochastic multiobjective optimization model which minimizes the total project time, cost, and resource moments. In the proposed time-cost-resource utilization optimization (TCRO) model, time and cost variables are considered to be fuzzy, to increase the flexibility for decision makers when using the model outputs. Application of fuzzy set theory in this study helps managers/planners to take these uncertainties into account and provide an optimal balance of time, cost, and resource utilization during the project execution. The fuzzy variables are discretized to represent different options for each activity. Nondominated sorting genetic algorithm (NSGA-II) has been used to solve the optimization problem. Results of the TCRO model for two different case studies of construction projects are presented in the paper. Total time and costs of the two case studies in the Pareto front solutions of the TCRO model cover more than 85% of the ranges of total time and costs of solutions of the biobjective time-cost optimization (TCO) model. The results show that adding the resource leveling capability to the previously developed TCO models provides more practical solutions in terms of resource allocation and utilization, which makes this research relevant to both industry practitioners and researchers.
    • Download: (1.586Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Stochastic Time-Cost-Resource Utilization Optimization Using Nondominated Sorting Genetic Algorithm and Discrete Fuzzy Sets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/58238
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorBanafsheh Zahraie
    contributor authorMehdi Tavakolan
    date accessioned2017-05-08T21:38:58Z
    date available2017-05-08T21:38:58Z
    date copyrightNovember 2009
    date issued2009
    identifier other%28asce%29co%2E1943-7862%2E0000097.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/58238
    description abstractIn a construction project, the cost and duration of activities could change due to different uncertain variables such as weather, resource availability, etc. Resource leveling and allocation strategies also influence total time and costs of projects. In this paper, two concepts of time-cost trade-off and resource leveling and allocation have been embedded in a stochastic multiobjective optimization model which minimizes the total project time, cost, and resource moments. In the proposed time-cost-resource utilization optimization (TCRO) model, time and cost variables are considered to be fuzzy, to increase the flexibility for decision makers when using the model outputs. Application of fuzzy set theory in this study helps managers/planners to take these uncertainties into account and provide an optimal balance of time, cost, and resource utilization during the project execution. The fuzzy variables are discretized to represent different options for each activity. Nondominated sorting genetic algorithm (NSGA-II) has been used to solve the optimization problem. Results of the TCRO model for two different case studies of construction projects are presented in the paper. Total time and costs of the two case studies in the Pareto front solutions of the TCRO model cover more than 85% of the ranges of total time and costs of solutions of the biobjective time-cost optimization (TCO) model. The results show that adding the resource leveling capability to the previously developed TCO models provides more practical solutions in terms of resource allocation and utilization, which makes this research relevant to both industry practitioners and researchers.
    publisherAmerican Society of Civil Engineers
    titleStochastic Time-Cost-Resource Utilization Optimization Using Nondominated Sorting Genetic Algorithm and Discrete Fuzzy Sets
    typeJournal Paper
    journal volume135
    journal issue11
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0000092
    treeJournal of Construction Engineering and Management:;2009:;Volume ( 135 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian