YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Analysis of FRP-Composite-Strengthened RC Panels with Anchorages against Blast Loads

    Source: Journal of Performance of Constructed Facilities:;2011:;Volume ( 025 ):;issue: 005
    Author:
    Azrul A. Mutalib
    ,
    Hong Hao
    DOI: 10.1061/(ASCE)CF.1943-5509.0000199
    Publisher: American Society of Civil Engineers
    Abstract: Extensive research has been conducted to investigate the blast effects on building structures and the protective design methods using the fiber-reinforced polymer (FRP) strengthening concepts in resisting structural damage and preventing injuries against dynamic explosive impacts. Both numerical and experimental studies have proved the effectiveness of FRP in strengthening structures to resist blast loads. However, problems related to end anchorage, bond length, and premature peeling have been concerns when strengthening structures in flexure or shear using FRP. In this paper, numerical analyses of FRP-composite-strengthened RC walls with or without additional anchors are carried out to examine the structural response under blast loads. The results illustrated that an anchor system is often necessary when using external FRP laminates for strengthening RC walls to prevent premature peeling. This study presents three simulations of RC walls, namely, an unstrengthened RC wall, an FRP-composite-strengthened RC wall with end anchorage, and an FRP-composite-strengthened RC wall with both end anchorage and anchors applied at a minimum spacing across the width and height of the RC wall. Commercial software LS-DYNA is used to carry out the structural response analysis. Numerical results show that anchorage of the FRP sheet may prevent peeling damage and therefore enhances the capacity of the FRP-strengthened RC walls against blast loads. However, anchors result in stress concentration and may cause FRP rupture.
    • Download: (1.760Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Analysis of FRP-Composite-Strengthened RC Panels with Anchorages against Blast Loads

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57789
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorAzrul A. Mutalib
    contributor authorHong Hao
    date accessioned2017-05-08T21:37:28Z
    date available2017-05-08T21:37:28Z
    date copyrightOctober 2011
    date issued2011
    identifier other%28asce%29cf%2E1943-5509%2E0000202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57789
    description abstractExtensive research has been conducted to investigate the blast effects on building structures and the protective design methods using the fiber-reinforced polymer (FRP) strengthening concepts in resisting structural damage and preventing injuries against dynamic explosive impacts. Both numerical and experimental studies have proved the effectiveness of FRP in strengthening structures to resist blast loads. However, problems related to end anchorage, bond length, and premature peeling have been concerns when strengthening structures in flexure or shear using FRP. In this paper, numerical analyses of FRP-composite-strengthened RC walls with or without additional anchors are carried out to examine the structural response under blast loads. The results illustrated that an anchor system is often necessary when using external FRP laminates for strengthening RC walls to prevent premature peeling. This study presents three simulations of RC walls, namely, an unstrengthened RC wall, an FRP-composite-strengthened RC wall with end anchorage, and an FRP-composite-strengthened RC wall with both end anchorage and anchors applied at a minimum spacing across the width and height of the RC wall. Commercial software LS-DYNA is used to carry out the structural response analysis. Numerical results show that anchorage of the FRP sheet may prevent peeling damage and therefore enhances the capacity of the FRP-strengthened RC walls against blast loads. However, anchors result in stress concentration and may cause FRP rupture.
    publisherAmerican Society of Civil Engineers
    titleNumerical Analysis of FRP-Composite-Strengthened RC Panels with Anchorages against Blast Loads
    typeJournal Paper
    journal volume25
    journal issue5
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0000199
    treeJournal of Performance of Constructed Facilities:;2011:;Volume ( 025 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian