YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Performance of Constructed Facilities
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Strengthening of RC T-Beams Using Mechanically Anchored Unbonded Dry Carbon Fiber Sheets

    Source: Journal of Performance of Constructed Facilities:;2010:;Volume ( 024 ):;issue: 001
    Author:
    Khaled Galal
    ,
    Amir Mofidi
    DOI: 10.1061/(ASCE)CF.1943-5509.0000067
    Publisher: American Society of Civil Engineers
    Abstract: This research studies the feasibility and effectiveness of a new method of strengthening existing RC T-beams in shear by using mechanically anchored unbonded dry carbon fiber (CF) sheets. This method eliminates the debonding of epoxy-bonded carbon-fiber-reinforced polymer (CFRP) sheets and utilizes the full capacity of dry CF sheets. In this method, dry CF sheets are wrapped around and bonded to two steel rods. Then the rods are anchored to the corners of the web-flange intersection of the T-beam with mechanical bolts. This makes a U-shaped dry CF jacket around the web which increases the shear strength of the T-beam using the privilege of higher tensile strength and modulus of elasticity of dry CF compared to composite CFRP. A total of three RC T-beams with shear span-to-depth ratio of 2.0 were tested under increasing monotonic load till failure. The pilot tests were done as a proof-of-concept of the effectiveness of the proposed method in increasing the shear capacity of the RC T-beams. The first T-beam, which was tested as the control beam, failed in shear. The second beam was strengthened by using a U-shaped CFRP sheet that was externally bonded to the web of the beam in the shear zones. The third beam was strengthened by using anchored U-shaped dry CF sheet. The test results showed that the beam strengthened by the new mechanically anchored dry CF had about 48% increase in shear capacity as compared to the control beam and 16% increase in shear capacity as compared to the beam strengthened by CFRP epoxy-bonding method.
    • Download: (139.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Strengthening of RC T-Beams Using Mechanically Anchored Unbonded Dry Carbon Fiber Sheets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57657
    Collections
    • Journal of Performance of Constructed Facilities

    Show full item record

    contributor authorKhaled Galal
    contributor authorAmir Mofidi
    date accessioned2017-05-08T21:37:15Z
    date available2017-05-08T21:37:15Z
    date copyrightFebruary 2010
    date issued2010
    identifier other%28asce%29cf%2E1943-5509%2E0000070.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57657
    description abstractThis research studies the feasibility and effectiveness of a new method of strengthening existing RC T-beams in shear by using mechanically anchored unbonded dry carbon fiber (CF) sheets. This method eliminates the debonding of epoxy-bonded carbon-fiber-reinforced polymer (CFRP) sheets and utilizes the full capacity of dry CF sheets. In this method, dry CF sheets are wrapped around and bonded to two steel rods. Then the rods are anchored to the corners of the web-flange intersection of the T-beam with mechanical bolts. This makes a U-shaped dry CF jacket around the web which increases the shear strength of the T-beam using the privilege of higher tensile strength and modulus of elasticity of dry CF compared to composite CFRP. A total of three RC T-beams with shear span-to-depth ratio of 2.0 were tested under increasing monotonic load till failure. The pilot tests were done as a proof-of-concept of the effectiveness of the proposed method in increasing the shear capacity of the RC T-beams. The first T-beam, which was tested as the control beam, failed in shear. The second beam was strengthened by using a U-shaped CFRP sheet that was externally bonded to the web of the beam in the shear zones. The third beam was strengthened by using anchored U-shaped dry CF sheet. The test results showed that the beam strengthened by the new mechanically anchored dry CF had about 48% increase in shear capacity as compared to the control beam and 16% increase in shear capacity as compared to the beam strengthened by CFRP epoxy-bonding method.
    publisherAmerican Society of Civil Engineers
    titleShear Strengthening of RC T-Beams Using Mechanically Anchored Unbonded Dry Carbon Fiber Sheets
    typeJournal Paper
    journal volume24
    journal issue1
    journal titleJournal of Performance of Constructed Facilities
    identifier doi10.1061/(ASCE)CF.1943-5509.0000067
    treeJournal of Performance of Constructed Facilities:;2010:;Volume ( 024 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian