YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Strengthening with Prestressed CFRP Strips with Gradient Anchorage

    Source: Journal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 005
    Author:
    Julien Michels
    ,
    Jose Sena-Cruz
    ,
    Christoph Czaderski
    ,
    Masoud Motavalli
    DOI: 10.1061/(ASCE)CC.1943-5614.0000372
    Publisher: American Society of Civil Engineers
    Abstract: This paper presents the principle and the application of an innovative anchorage technique for prestressed carbon fiber–reinforced polymer (CFRP) strips in structural strengthening. Additionally, large-scale static loading tests of retrofitted concrete beams are shown. The gradient anchorage, based on the adhesive’s ability to undergo accelerated curing at high temperatures, consists of a purely concrete-adhesive strip connection without any mechanical devices, such as bolts or plates. In a first step, this study summarizes anchorage techniques presented in the literature and introduces the basic principles of the new method as well as the necessary components. In a second step, an application on a full-scale RC beam is explained in detail. A commercially-available CFRP strip is prestressed up to 0.6% prestrain and subsequently anchored by sequential epoxy-curing and force-releasing steps at both strip ends. Furthermore, uniaxial tensile tests on the epoxy adhesive and the CFRP strip are used for material characterization and to demonstrate the reinforcing materials’ integrity after the heating process. It appeared that prestress losses during the anchoring phase are negligible. The method allows much faster installation than conventional mechanical techniques and increases durability because no permanent steel elements are necessary. The material tests indicate no damage in the reinforcing CFRP strip as well as a sufficiently fast strength development of the adhesive after accelerated curing. Static loading tests on strengthened large-scale RC beams are presented and show the efficiency of a prestressed CFRP strip with gradient anchorage as a retrofitting technique. Finally, first long-term measurements over 13 years on a prestressed strip bonded to a concrete plate revealed small prestrain losses.
    • Download: (1.629Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Strengthening with Prestressed CFRP Strips with Gradient Anchorage

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57514
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorJulien Michels
    contributor authorJose Sena-Cruz
    contributor authorChristoph Czaderski
    contributor authorMasoud Motavalli
    date accessioned2017-05-08T21:36:46Z
    date available2017-05-08T21:36:46Z
    date copyrightOctober 2013
    date issued2013
    identifier other%28asce%29cc%2E1943-5614%2E0000375.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57514
    description abstractThis paper presents the principle and the application of an innovative anchorage technique for prestressed carbon fiber–reinforced polymer (CFRP) strips in structural strengthening. Additionally, large-scale static loading tests of retrofitted concrete beams are shown. The gradient anchorage, based on the adhesive’s ability to undergo accelerated curing at high temperatures, consists of a purely concrete-adhesive strip connection without any mechanical devices, such as bolts or plates. In a first step, this study summarizes anchorage techniques presented in the literature and introduces the basic principles of the new method as well as the necessary components. In a second step, an application on a full-scale RC beam is explained in detail. A commercially-available CFRP strip is prestressed up to 0.6% prestrain and subsequently anchored by sequential epoxy-curing and force-releasing steps at both strip ends. Furthermore, uniaxial tensile tests on the epoxy adhesive and the CFRP strip are used for material characterization and to demonstrate the reinforcing materials’ integrity after the heating process. It appeared that prestress losses during the anchoring phase are negligible. The method allows much faster installation than conventional mechanical techniques and increases durability because no permanent steel elements are necessary. The material tests indicate no damage in the reinforcing CFRP strip as well as a sufficiently fast strength development of the adhesive after accelerated curing. Static loading tests on strengthened large-scale RC beams are presented and show the efficiency of a prestressed CFRP strip with gradient anchorage as a retrofitting technique. Finally, first long-term measurements over 13 years on a prestressed strip bonded to a concrete plate revealed small prestrain losses.
    publisherAmerican Society of Civil Engineers
    titleStructural Strengthening with Prestressed CFRP Strips with Gradient Anchorage
    typeJournal Paper
    journal volume17
    journal issue5
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000372
    treeJournal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian