YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resistance Factors for Ductile FRP-Reinforced Concrete Flexural Members

    Source: Journal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    Author:
    Bashar Behnam
    ,
    Christopher Eamon
    DOI: 10.1061/(ASCE)CC.1943-5614.0000363
    Publisher: American Society of Civil Engineers
    Abstract: To prevent damage caused by corroding reinforcement, fiber-reinforced polymer (FRP) reinforcing bars have been used in place of steel in a relatively small but increasing number of structures in civil infrastructure. A concern with the use of traditional FRP bars, however, is the resulting lack of ductility. This problem has been overcome with the development of a new generation of composite reinforcement, ductile hybrid FRP (DHFRP) bars. However, standards that address the design of DHFRP bars are unavailable, and appropriate resistance factors for the use of DHFRP reinforcement are unknown. In this paper, a reliability analysis is conducted on tension-controlled concrete flexural members reinforced with DHFRP with the intent to estimate potential strength-reduction factors. Flexural members considered include a selection of representative bridge decks and building beams designed to meet strength requirements and target reliability levels dictated by relevant engineering standards. Nominal moment capacity is calculated from standard analytical models and is taken as first DHFRP material failure. Statistical parameters for load and resistance random variables in the reliability model are consistent with previous code calibration efforts. The resulting resistance factors ranged from 0.61–0.64 for tension-controlled sections, which indicates a potential increase in allowed strength with respect to flexural members using nonductile bars.
    • Download: (335.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resistance Factors for Ductile FRP-Reinforced Concrete Flexural Members

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57504
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorBashar Behnam
    contributor authorChristopher Eamon
    date accessioned2017-05-08T21:36:44Z
    date available2017-05-08T21:36:44Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29cc%2E1943-5614%2E0000366.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57504
    description abstractTo prevent damage caused by corroding reinforcement, fiber-reinforced polymer (FRP) reinforcing bars have been used in place of steel in a relatively small but increasing number of structures in civil infrastructure. A concern with the use of traditional FRP bars, however, is the resulting lack of ductility. This problem has been overcome with the development of a new generation of composite reinforcement, ductile hybrid FRP (DHFRP) bars. However, standards that address the design of DHFRP bars are unavailable, and appropriate resistance factors for the use of DHFRP reinforcement are unknown. In this paper, a reliability analysis is conducted on tension-controlled concrete flexural members reinforced with DHFRP with the intent to estimate potential strength-reduction factors. Flexural members considered include a selection of representative bridge decks and building beams designed to meet strength requirements and target reliability levels dictated by relevant engineering standards. Nominal moment capacity is calculated from standard analytical models and is taken as first DHFRP material failure. Statistical parameters for load and resistance random variables in the reliability model are consistent with previous code calibration efforts. The resulting resistance factors ranged from 0.61–0.64 for tension-controlled sections, which indicates a potential increase in allowed strength with respect to flexural members using nonductile bars.
    publisherAmerican Society of Civil Engineers
    titleResistance Factors for Ductile FRP-Reinforced Concrete Flexural Members
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000363
    treeJournal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian