YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flexural Behavior of a Carbon Fiber–Reinforced Polymer Prestressed Decked Bulb T-Beam Bridge System

    Source: Journal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    Author:
    Nabil Grace
    ,
    Kenichi Ushijima
    ,
    Prince Baah
    ,
    Mena Bebawy
    DOI: 10.1061/(ASCE)CC.1943-5614.0000345
    Publisher: American Society of Civil Engineers
    Abstract: Experimental and numerical investigations were conducted to evaluate the performance of a newly developed bridge system. Through the investigation, a decked bulb T-beam bridge model was constructed, instrumented, and tested under service and ultimate loads. The bridge model had a width of 2.59 m (8.5 ft), an effective span of 9.45 m (31 ft), a depth of 356 mm (14 in.), and was composed of five adjacent decked bulb T-beams. The T-beams were interconnected at their top flanges using 76-mm (3-in.)-wide ultra-high-performance concrete (UHPC) shear key joints and five full-depth equally spaced transverse diaphragms along the span. Each diaphragm was posttensioned with two nonbonded transverse carbon fiber composite cable (CFCC) strands. The investigation revealed that the developed decked bulb T-beam bridge system maintained its structural integrity under service loads with signs of distress in neither the shear key joints nor top flanges. UHPC shear keys with the transverse diaphragms were adequate to achieve monolithic action across the width of the bridge model. In addition, transverse posttensioning forces were effective in restoring the structural integrity of the bridge model when cracks were artificially induced in the shear key joints. At the ultimate limit state the bridge model exhibited compression failure by crushing of the concrete in the top flange. The compression failure was associated with low ductility, a dense cracking pattern, and excessive deflection.
    • Download: (1.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flexural Behavior of a Carbon Fiber–Reinforced Polymer Prestressed Decked Bulb T-Beam Bridge System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57484
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorNabil Grace
    contributor authorKenichi Ushijima
    contributor authorPrince Baah
    contributor authorMena Bebawy
    date accessioned2017-05-08T21:36:41Z
    date available2017-05-08T21:36:41Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29cc%2E1943-5614%2E0000348.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57484
    description abstractExperimental and numerical investigations were conducted to evaluate the performance of a newly developed bridge system. Through the investigation, a decked bulb T-beam bridge model was constructed, instrumented, and tested under service and ultimate loads. The bridge model had a width of 2.59 m (8.5 ft), an effective span of 9.45 m (31 ft), a depth of 356 mm (14 in.), and was composed of five adjacent decked bulb T-beams. The T-beams were interconnected at their top flanges using 76-mm (3-in.)-wide ultra-high-performance concrete (UHPC) shear key joints and five full-depth equally spaced transverse diaphragms along the span. Each diaphragm was posttensioned with two nonbonded transverse carbon fiber composite cable (CFCC) strands. The investigation revealed that the developed decked bulb T-beam bridge system maintained its structural integrity under service loads with signs of distress in neither the shear key joints nor top flanges. UHPC shear keys with the transverse diaphragms were adequate to achieve monolithic action across the width of the bridge model. In addition, transverse posttensioning forces were effective in restoring the structural integrity of the bridge model when cracks were artificially induced in the shear key joints. At the ultimate limit state the bridge model exhibited compression failure by crushing of the concrete in the top flange. The compression failure was associated with low ductility, a dense cracking pattern, and excessive deflection.
    publisherAmerican Society of Civil Engineers
    titleFlexural Behavior of a Carbon Fiber–Reinforced Polymer Prestressed Decked Bulb T-Beam Bridge System
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000345
    treeJournal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian