YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Phased Nonlinear Finite-Element Analysis of Precracked RC T-Beams Repaired in Shear with CFRP Sheets

    Source: Journal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    Author:
    Samir Dirar
    ,
    Janet M. Lees
    ,
    Chris Morley
    DOI: 10.1061/(ASCE)CC.1943-5614.0000341
    Publisher: American Society of Civil Engineers
    Abstract: Phased nonlinear finite-element (FE) analyses were carried out to predict the behavior of precracked reinforced concrete (RC) T-beams repaired in shear with externally bonded (EB) carbon fiber–reinforced polymer (CFRP) sheets and subjected to two loading patterns (LPs). Appropriate constitutive relationships were employed to model the behavior of concrete, internal steel reinforcement, EB CFRP reinforcement, and CFRP-to-concrete interface and consequently predict the structural behavior and capture the failure modes of the strengthened beams. Three constitutive models for the behavior of concrete in shear were evaluated, namely, a total strain rotating crack model and two fixed-angle crack models with either constant or variable shear retention factors. The majority of published FE studies have considered rectangular sections that were strengthened before testing. The key feature of the FE models presented in this paper is the use of the phased-analysis technique to model realistically the process of strengthening RC T-beams under load and predict the structural response of the beams to different loading patterns. Furthermore, the paper provides insight into and evaluates the accuracy of the three concrete shear models named above. A detailed comparison between the numerical and experimental results included the shear forces at failure, shear force-deflection curves, crack patterns, failure modes, and strains in the internal steel and external CFRP shear reinforcement. The FE models predicted the experimental shear force capacities and crack patterns with sufficient accuracy but underestimated the postrepair stiffness for the beams subjected to Loading Pattern 1 and overestimated the strain in the CFRP sheets.
    • Download: (24.27Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Phased Nonlinear Finite-Element Analysis of Precracked RC T-Beams Repaired in Shear with CFRP Sheets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57480
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorSamir Dirar
    contributor authorJanet M. Lees
    contributor authorChris Morley
    date accessioned2017-05-08T21:36:40Z
    date available2017-05-08T21:36:40Z
    date copyrightAugust 2013
    date issued2013
    identifier other%28asce%29cc%2E1943-5614%2E0000344.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57480
    description abstractPhased nonlinear finite-element (FE) analyses were carried out to predict the behavior of precracked reinforced concrete (RC) T-beams repaired in shear with externally bonded (EB) carbon fiber–reinforced polymer (CFRP) sheets and subjected to two loading patterns (LPs). Appropriate constitutive relationships were employed to model the behavior of concrete, internal steel reinforcement, EB CFRP reinforcement, and CFRP-to-concrete interface and consequently predict the structural behavior and capture the failure modes of the strengthened beams. Three constitutive models for the behavior of concrete in shear were evaluated, namely, a total strain rotating crack model and two fixed-angle crack models with either constant or variable shear retention factors. The majority of published FE studies have considered rectangular sections that were strengthened before testing. The key feature of the FE models presented in this paper is the use of the phased-analysis technique to model realistically the process of strengthening RC T-beams under load and predict the structural response of the beams to different loading patterns. Furthermore, the paper provides insight into and evaluates the accuracy of the three concrete shear models named above. A detailed comparison between the numerical and experimental results included the shear forces at failure, shear force-deflection curves, crack patterns, failure modes, and strains in the internal steel and external CFRP shear reinforcement. The FE models predicted the experimental shear force capacities and crack patterns with sufficient accuracy but underestimated the postrepair stiffness for the beams subjected to Loading Pattern 1 and overestimated the strain in the CFRP sheets.
    publisherAmerican Society of Civil Engineers
    titlePhased Nonlinear Finite-Element Analysis of Precracked RC T-Beams Repaired in Shear with CFRP Sheets
    typeJournal Paper
    journal volume17
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000341
    treeJournal of Composites for Construction:;2013:;Volume ( 017 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian