YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CFRP-Confined Square RC Columns. II: Cyclic Axial Compression Stress-Strain Model

    Source: Journal of Composites for Construction:;2012:;Volume ( 016 ):;issue: 002
    Author:
    Zhenyu Wang
    ,
    Daiyu Wang
    ,
    Scott T. Smith
    ,
    Dagang Lu
    DOI: 10.1061/(ASCE)CC.1943-5614.0000246
    Publisher: American Society of Civil Engineers
    Abstract: For the seismic design of fiber reinforcement polymer (FRP) confined reinforced concrete (RC) columns, the development of an accurate axial stress-strain model that considers cyclic compression is necessary. In light of such a demand, this paper presents a cyclic axial stress-strain model for FRP-confined RC square columns. The model is informed from physical observations and test measurements obtained from an experimental investigation reported in the companion paper, in which FRP-confined square unreinforced and reinforced concrete columns of larger size under varying cyclic axial compression patterns were tested. In the current paper, the proposed stress-strain model is presented and it consists of three main components, namely (1) a monotonic stress-strain model to describe the envelope curve, (2) a polynomial expression for the unloading path, and (3) a straight line for the reloading path. The influence of internal longitudinal and hoop steel reinforcement is also considered in the proposed model, in addition to their influence on the ultimate stress and strain. The accuracy of the model is finally validated with an experimental database compiled of tests reported in the companion paper and other relevant tests extracted from the open literature
    • Download: (1.320Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CFRP-Confined Square RC Columns. II: Cyclic Axial Compression Stress-Strain Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57376
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorZhenyu Wang
    contributor authorDaiyu Wang
    contributor authorScott T. Smith
    contributor authorDagang Lu
    date accessioned2017-05-08T21:36:27Z
    date available2017-05-08T21:36:27Z
    date copyrightApril 2012
    date issued2012
    identifier other%28asce%29cc%2E1943-5614%2E0000249.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57376
    description abstractFor the seismic design of fiber reinforcement polymer (FRP) confined reinforced concrete (RC) columns, the development of an accurate axial stress-strain model that considers cyclic compression is necessary. In light of such a demand, this paper presents a cyclic axial stress-strain model for FRP-confined RC square columns. The model is informed from physical observations and test measurements obtained from an experimental investigation reported in the companion paper, in which FRP-confined square unreinforced and reinforced concrete columns of larger size under varying cyclic axial compression patterns were tested. In the current paper, the proposed stress-strain model is presented and it consists of three main components, namely (1) a monotonic stress-strain model to describe the envelope curve, (2) a polynomial expression for the unloading path, and (3) a straight line for the reloading path. The influence of internal longitudinal and hoop steel reinforcement is also considered in the proposed model, in addition to their influence on the ultimate stress and strain. The accuracy of the model is finally validated with an experimental database compiled of tests reported in the companion paper and other relevant tests extracted from the open literature
    publisherAmerican Society of Civil Engineers
    titleCFRP-Confined Square RC Columns. II: Cyclic Axial Compression Stress-Strain Model
    typeJournal Paper
    journal volume16
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000246
    treeJournal of Composites for Construction:;2012:;Volume ( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian