YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    CFRP-Confined Square RC Columns. I: Experimental Investigation

    Source: Journal of Composites for Construction:;2012:;Volume ( 016 ):;issue: 002
    Author:
    Zhenyu Wang
    ,
    Daiyu Wang
    ,
    Scott T. Smith
    ,
    Dagang Lu
    DOI: 10.1061/(ASCE)CC.1943-5614.0000245
    Publisher: American Society of Civil Engineers
    Abstract: The majority of experimental studies investigating the stress-strain behavior of square concrete columns confined with carbon fiber-reinforced polymer (CFRP) composites have focused largely on unreinforced columns of small size. Research on the influence of larger cross section, height, internal steel reinforcement, and initial damage on the axial strength and compressive behavior of CFRP-confined square reinforced concrete (RC) columns is, however, limited. To address such knowledge gaps, this paper presents the results of an experimental investigation on the axial stress-strain behavior of 34 larger-sized square-sectioned RC columns confined with CFRP composite wraps. The primary test variables were (1) cross-sectional dimensions, (2) volumetric ratio of internal hoop steel reinforcement, (3) number of layers of CFRP wrap, (4) nature of loading (i.e., monotonic and cyclic), and (5) damage level before CFRP wrapping. The experiments showed the CFRP wrap to considerably enhance the axial strain capacity but to only slightly increase the axial stress capacity. The experiments also showed the internal reinforcement to influence the shape of the axial stress-strain envelope curve and unloading path and the ultimate axial strain and plastic strain values. Predamage was, however, found to have a small influence. A new confinement pressure model for fiber-reinforced polymer (FRP) confined square RC columns is finally proposed.
    • Download: (607.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      CFRP-Confined Square RC Columns. I: Experimental Investigation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57374
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorZhenyu Wang
    contributor authorDaiyu Wang
    contributor authorScott T. Smith
    contributor authorDagang Lu
    date accessioned2017-05-08T21:36:27Z
    date available2017-05-08T21:36:27Z
    date copyrightApril 2012
    date issued2012
    identifier other%28asce%29cc%2E1943-5614%2E0000248.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57374
    description abstractThe majority of experimental studies investigating the stress-strain behavior of square concrete columns confined with carbon fiber-reinforced polymer (CFRP) composites have focused largely on unreinforced columns of small size. Research on the influence of larger cross section, height, internal steel reinforcement, and initial damage on the axial strength and compressive behavior of CFRP-confined square reinforced concrete (RC) columns is, however, limited. To address such knowledge gaps, this paper presents the results of an experimental investigation on the axial stress-strain behavior of 34 larger-sized square-sectioned RC columns confined with CFRP composite wraps. The primary test variables were (1) cross-sectional dimensions, (2) volumetric ratio of internal hoop steel reinforcement, (3) number of layers of CFRP wrap, (4) nature of loading (i.e., monotonic and cyclic), and (5) damage level before CFRP wrapping. The experiments showed the CFRP wrap to considerably enhance the axial strain capacity but to only slightly increase the axial stress capacity. The experiments also showed the internal reinforcement to influence the shape of the axial stress-strain envelope curve and unloading path and the ultimate axial strain and plastic strain values. Predamage was, however, found to have a small influence. A new confinement pressure model for fiber-reinforced polymer (FRP) confined square RC columns is finally proposed.
    publisherAmerican Society of Civil Engineers
    titleCFRP-Confined Square RC Columns. I: Experimental Investigation
    typeJournal Paper
    journal volume16
    journal issue2
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000245
    treeJournal of Composites for Construction:;2012:;Volume ( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian