YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Electroosmosis on Soil Temperature and Hydraulic Head. II: Numerical Simulation

    Source: Journal of Environmental Engineering:;2002:;Volume ( 128 ):;issue: 007
    Author:
    Jiann-Long Chen
    ,
    Souhail Al-Abed
    ,
    James Ryan
    ,
    Mike Roulier
    ,
    Mark Kemper
    DOI: 10.1061/(ASCE)0733-9372(2002)128:7(596)
    Publisher: American Society of Civil Engineers
    Abstract: A numerical model to simulate the distributions of the voltage, soil temperature, and hydraulic head during a field test of electroosmosis was developed. The two-dimensional governing equations for the distributions of the voltage, soil temperature, and hydraulic head within a cylindrical domain are derived based on the principles of charge, energy, and mass conservations, Darcy’s law, Ohm’s law, and Fourier’s law of heat conduction. We assumed that the voltage distribution was at steady state, whereas the soil temperature and hydraulic head were at transient states during the test. The simulated domain was segmented with a block-centered finite-difference scheme and the resulting equations were solved numerically with the successive overrelaxation method. The parameters (such as electrical, thermal, hydraulic, and electroosmotic properties of the soil, graphite, and sand) that were required by the model were measured either using core samples or slug tests. The model is able to predict the pattern as well as the magnitude of the voltage profiles observed. The simulated temperatures are similar in pattern and are within 3°C of the values observed in the four casings during 4 weeks of electroosmosis. The changes in the rates of temperature with an increase in energy input predicted by the model are in agreement with the observed changes. The output from the hydraulic head simulations showed that the model could predict patterns of hydraulic head changes in the vicinity of mesh and graphite electrodes. The model, however, underestimated the magnitude of the changes close to the anode. The simulated electroosmotic flow rate of 0.9 L/h is also consistent with the observation of 0.6–0.8 L/h.
    • Download: (440.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Electroosmosis on Soil Temperature and Hydraulic Head. II: Numerical Simulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57320
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJiann-Long Chen
    contributor authorSouhail Al-Abed
    contributor authorJames Ryan
    contributor authorMike Roulier
    contributor authorMark Kemper
    date accessioned2017-05-08T21:36:21Z
    date available2017-05-08T21:36:21Z
    date copyrightJuly 2002
    date issued2002
    identifier other%28asce%290733-9372%282002%29128%3A7%28596%29.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57320
    description abstractA numerical model to simulate the distributions of the voltage, soil temperature, and hydraulic head during a field test of electroosmosis was developed. The two-dimensional governing equations for the distributions of the voltage, soil temperature, and hydraulic head within a cylindrical domain are derived based on the principles of charge, energy, and mass conservations, Darcy’s law, Ohm’s law, and Fourier’s law of heat conduction. We assumed that the voltage distribution was at steady state, whereas the soil temperature and hydraulic head were at transient states during the test. The simulated domain was segmented with a block-centered finite-difference scheme and the resulting equations were solved numerically with the successive overrelaxation method. The parameters (such as electrical, thermal, hydraulic, and electroosmotic properties of the soil, graphite, and sand) that were required by the model were measured either using core samples or slug tests. The model is able to predict the pattern as well as the magnitude of the voltage profiles observed. The simulated temperatures are similar in pattern and are within 3°C of the values observed in the four casings during 4 weeks of electroosmosis. The changes in the rates of temperature with an increase in energy input predicted by the model are in agreement with the observed changes. The output from the hydraulic head simulations showed that the model could predict patterns of hydraulic head changes in the vicinity of mesh and graphite electrodes. The model, however, underestimated the magnitude of the changes close to the anode. The simulated electroosmotic flow rate of 0.9 L/h is also consistent with the observation of 0.6–0.8 L/h.
    publisherAmerican Society of Civil Engineers
    titleEffects of Electroosmosis on Soil Temperature and Hydraulic Head. II: Numerical Simulation
    typeJournal Paper
    journal volume128
    journal issue7
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)0733-9372(2002)128:7(596)
    treeJournal of Environmental Engineering:;2002:;Volume ( 128 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian