YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams

    Source: Journal of Composites for Construction:;2011:;Volume ( 015 ):;issue: 003
    Author:
    G. M. Chen
    ,
    J. G. Teng
    ,
    J. F. Chen
    DOI: 10.1061/(ASCE)CC.1943-5614.0000157
    Publisher: American Society of Civil Engineers
    Abstract: Intermediate crack-induced debonding (IC debonding) is a common failure mode of RC beams strengthened with externally bonded fiber-reinforced polymer (FRP) reinforcement. Although extensive research has been carried out on IC debonding, much work is still needed to develop a better understanding of the failure mode and a more reliable strength model. This paper presents an advanced finite-element (FE) model on the basis of the smeared-crack approach for predicting IC debonding failure. Existing FE models of the same type are generally deficient in capturing localized cracks (both their pattern and widths). This deficiency is overcome in the proposed FE model through the accurate modeling of interfaces between the concrete and both the internal steel and the external FRP reinforcements. The capability and accuracy of the proposed model are demonstrated through comparisons of its predictions with selected test results. The importance of accurate modeling of localized cracking is also explained using numerical results obtained from the FE model.
    • Download: (1.932Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57278
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorG. M. Chen
    contributor authorJ. G. Teng
    contributor authorJ. F. Chen
    date accessioned2017-05-08T21:36:16Z
    date available2017-05-08T21:36:16Z
    date copyrightJune 2011
    date issued2011
    identifier other%28asce%29cc%2E1943-5614%2E0000160.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57278
    description abstractIntermediate crack-induced debonding (IC debonding) is a common failure mode of RC beams strengthened with externally bonded fiber-reinforced polymer (FRP) reinforcement. Although extensive research has been carried out on IC debonding, much work is still needed to develop a better understanding of the failure mode and a more reliable strength model. This paper presents an advanced finite-element (FE) model on the basis of the smeared-crack approach for predicting IC debonding failure. Existing FE models of the same type are generally deficient in capturing localized cracks (both their pattern and widths). This deficiency is overcome in the proposed FE model through the accurate modeling of interfaces between the concrete and both the internal steel and the external FRP reinforcements. The capability and accuracy of the proposed model are demonstrated through comparisons of its predictions with selected test results. The importance of accurate modeling of localized cracking is also explained using numerical results obtained from the FE model.
    publisherAmerican Society of Civil Engineers
    titleFinite-Element Modeling of Intermediate Crack Debonding in FRP-Plated RC Beams
    typeJournal Paper
    journal volume15
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000157
    treeJournal of Composites for Construction:;2011:;Volume ( 015 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian