YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of FRP-Retrofitted Joints Built with Plain Bars and Low-Strength Concrete

    Source: Journal of Composites for Construction:;2011:;Volume ( 015 ):;issue: 003
    Author:
    Alper Ilki
    ,
    Idris Bedirhanoglu
    ,
    Nahit Kumbasar
    DOI: 10.1061/(ASCE)CC.1943-5614.0000156
    Publisher: American Society of Civil Engineers
    Abstract: Two series of tests on eight full-scale exterior beam-column joint subassemblages built with plain bars and low-strength concrete were conducted. No transverse reinforcement was present in the joint cores. In the first series of tests, which included three specimens, the behavior of joints before fiber-reinforced polymer (FRP) retrofitting was investigated. In the second series, which included five specimens, the behavior of the FRP-retrofitted joints was investigated. The six specimens consisted of a column, an in-plane beam, a transverse beam, and a slab part, and two specimens were plane members without transverse beams and slabs. The utilized retrofitting scheme is easily applicable for actual exterior beam-column joints, even in the presence of a transverse beam and a slab. Two types of strength limitation were observed for specimens in the first series. The strength of the specimen with beam longitudinal bars sufficiently anchored to the joint core was limited by the shear strength of the joint. The strengths of the other two specimens were limited by the slip of the beams’ longitudinal bars at their anchorages. In the second series of tests, significantly better performance was obtained both in terms of shear strength and ductility, provided that the slip of the beam bars was prevented. Furthermore, by using a simple theoretical algorithm based on truss analogy, the strength and deformability characteristics of the tested reference and FRP-retrofitted joints are predicted with reasonable accuracy. The same algorithm is used for predicting the joint shear strength of specimens tested by other researchers, and satisfactory agreement is obtained between the predictions and test results.
    • Download: (479.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of FRP-Retrofitted Joints Built with Plain Bars and Low-Strength Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57277
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorAlper Ilki
    contributor authorIdris Bedirhanoglu
    contributor authorNahit Kumbasar
    date accessioned2017-05-08T21:36:16Z
    date available2017-05-08T21:36:16Z
    date copyrightJune 2011
    date issued2011
    identifier other%28asce%29cc%2E1943-5614%2E0000159.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57277
    description abstractTwo series of tests on eight full-scale exterior beam-column joint subassemblages built with plain bars and low-strength concrete were conducted. No transverse reinforcement was present in the joint cores. In the first series of tests, which included three specimens, the behavior of joints before fiber-reinforced polymer (FRP) retrofitting was investigated. In the second series, which included five specimens, the behavior of the FRP-retrofitted joints was investigated. The six specimens consisted of a column, an in-plane beam, a transverse beam, and a slab part, and two specimens were plane members without transverse beams and slabs. The utilized retrofitting scheme is easily applicable for actual exterior beam-column joints, even in the presence of a transverse beam and a slab. Two types of strength limitation were observed for specimens in the first series. The strength of the specimen with beam longitudinal bars sufficiently anchored to the joint core was limited by the shear strength of the joint. The strengths of the other two specimens were limited by the slip of the beams’ longitudinal bars at their anchorages. In the second series of tests, significantly better performance was obtained both in terms of shear strength and ductility, provided that the slip of the beam bars was prevented. Furthermore, by using a simple theoretical algorithm based on truss analogy, the strength and deformability characteristics of the tested reference and FRP-retrofitted joints are predicted with reasonable accuracy. The same algorithm is used for predicting the joint shear strength of specimens tested by other researchers, and satisfactory agreement is obtained between the predictions and test results.
    publisherAmerican Society of Civil Engineers
    titleBehavior of FRP-Retrofitted Joints Built with Plain Bars and Low-Strength Concrete
    typeJournal Paper
    journal volume15
    journal issue3
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000156
    treeJournal of Composites for Construction:;2011:;Volume ( 015 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian