YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    In-Plane Shear Behavior of Masonry Panels Strengthened with NSM CFRP Strips. II: Finite-Element Model

    Source: Journal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 006
    Author:
    Robert B. Petersen
    ,
    Mark J. Masia
    ,
    Rudolf Seracino
    DOI: 10.1061/(ASCE)CC.1943-5614.0000137
    Publisher: American Society of Civil Engineers
    Abstract: A combined experimental and numerical program was conducted to study the in-plane shear behavior of clay brick masonry walls strengthened with near surface mounting carbon-fiber-reinforced polymer (CFRP) strips. This paper is focused on the numerical program. A two-dimensional finite-element (FE) model was used to simulate the behavior of FRP-strengthened wall tests. The masonry was modeled using the micromodeling approach. The FRP was attached to the masonry mesh using the shear bond-slip relationships determined from experimental pull tests. The model was designed in a way so that FRP crossing a sliding crack (perpendicularly) would prevent crack opening, normal to the direction of sliding (dilation), and increase sliding resistance. This sliding resisting mechanism was observed in the experimental tests. The FE model reproduced the key behaviors observed in the experiments, including the load-displacement response, crack development, and FRP reinforcement contribution. The FE model did not include masonry cracking adjacent to the FRP and through the wall thickness (as observed in some experiments). This type of cracking resulted in premature FRP debonding in the experiments. Debonding did not occur in the FE model because this type of masonry cracking was not modeled.
    • Download: (1.359Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      In-Plane Shear Behavior of Masonry Panels Strengthened with NSM CFRP Strips. II: Finite-Element Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57256
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorRobert B. Petersen
    contributor authorMark J. Masia
    contributor authorRudolf Seracino
    date accessioned2017-05-08T21:36:14Z
    date available2017-05-08T21:36:14Z
    date copyrightDecember 2010
    date issued2010
    identifier other%28asce%29cc%2E1943-5614%2E0000140.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57256
    description abstractA combined experimental and numerical program was conducted to study the in-plane shear behavior of clay brick masonry walls strengthened with near surface mounting carbon-fiber-reinforced polymer (CFRP) strips. This paper is focused on the numerical program. A two-dimensional finite-element (FE) model was used to simulate the behavior of FRP-strengthened wall tests. The masonry was modeled using the micromodeling approach. The FRP was attached to the masonry mesh using the shear bond-slip relationships determined from experimental pull tests. The model was designed in a way so that FRP crossing a sliding crack (perpendicularly) would prevent crack opening, normal to the direction of sliding (dilation), and increase sliding resistance. This sliding resisting mechanism was observed in the experimental tests. The FE model reproduced the key behaviors observed in the experiments, including the load-displacement response, crack development, and FRP reinforcement contribution. The FE model did not include masonry cracking adjacent to the FRP and through the wall thickness (as observed in some experiments). This type of cracking resulted in premature FRP debonding in the experiments. Debonding did not occur in the FE model because this type of masonry cracking was not modeled.
    publisherAmerican Society of Civil Engineers
    titleIn-Plane Shear Behavior of Masonry Panels Strengthened with NSM CFRP Strips. II: Finite-Element Model
    typeJournal Paper
    journal volume14
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000137
    treeJournal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian