YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Stress Intensity Factor of a Cracked Steel Plate with a Single-Side CFRP Composite Patching

    Source: Journal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 006
    Author:
    Angus C. C. Lam
    ,
    Michael C. H. Yam
    ,
    J. J. Roger Cheng
    ,
    Gaylene D. Kennedy
    DOI: 10.1061/(ASCE)CC.1943-5614.0000136
    Publisher: American Society of Civil Engineers
    Abstract: Composite fiber patching techniques have been considered as alternatives to traditional methods of strengthening and fatigue crack repair in steel structures. It is known that the fatigue strength of a cracked steel element depends on the stress intensity factor (SIF) at the crack tip which is a function of the stress/strain distribution of the plate. This paper presents an experimental study of tension tests of cracked steel plates repaired by single-side carbon fiber-reinforced polymer (CFRP) patching in investigating the strain distribution in the vicinity of the cracked region. The test parameters included patch length, patch width, tapered end, and axial stiffness ratio of adherend. It is shown from the test results that the single-side CFRP patching applied onto the cracked steel plate decreased the crack tip strains significantly in the patched face and increased the strains in the unpatched face. Finite-element analyses of the specimens using both the three layers model proposed by previous researchers and a modified three layers model proposed in this study were conducted to examine the strain distributions in the vicinity of the crack. In general, the strain distributions of the specimens were predicted well by the finite-element analyses using either model. The finite-element results showed that the SIF at the crack tip through the plate thickness was significantly reduced except on the unpatched side and the modified three layers model was able to capture the nonlinear SIF variation through the thickness of a cracked steel plate with single-side patching. Meanwhile, the three layers model overestimated the SIF on the patched side and underestimated the SIF on the unpatched side by about 10% on average compared to those of the modified three layers model. Based on the finite-element analysis results of the modified three layers model, it is shown that the width and the length of patching had only a marginal effect on the SIF. On the other hand, the effect of the number of layers of patching on the reduction of SIF was more pronounced.
    • Download: (433.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Stress Intensity Factor of a Cracked Steel Plate with a Single-Side CFRP Composite Patching

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/57255
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorAngus C. C. Lam
    contributor authorMichael C. H. Yam
    contributor authorJ. J. Roger Cheng
    contributor authorGaylene D. Kennedy
    date accessioned2017-05-08T21:36:13Z
    date available2017-05-08T21:36:13Z
    date copyrightDecember 2010
    date issued2010
    identifier other%28asce%29cc%2E1943-5614%2E0000139.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/57255
    description abstractComposite fiber patching techniques have been considered as alternatives to traditional methods of strengthening and fatigue crack repair in steel structures. It is known that the fatigue strength of a cracked steel element depends on the stress intensity factor (SIF) at the crack tip which is a function of the stress/strain distribution of the plate. This paper presents an experimental study of tension tests of cracked steel plates repaired by single-side carbon fiber-reinforced polymer (CFRP) patching in investigating the strain distribution in the vicinity of the cracked region. The test parameters included patch length, patch width, tapered end, and axial stiffness ratio of adherend. It is shown from the test results that the single-side CFRP patching applied onto the cracked steel plate decreased the crack tip strains significantly in the patched face and increased the strains in the unpatched face. Finite-element analyses of the specimens using both the three layers model proposed by previous researchers and a modified three layers model proposed in this study were conducted to examine the strain distributions in the vicinity of the crack. In general, the strain distributions of the specimens were predicted well by the finite-element analyses using either model. The finite-element results showed that the SIF at the crack tip through the plate thickness was significantly reduced except on the unpatched side and the modified three layers model was able to capture the nonlinear SIF variation through the thickness of a cracked steel plate with single-side patching. Meanwhile, the three layers model overestimated the SIF on the patched side and underestimated the SIF on the unpatched side by about 10% on average compared to those of the modified three layers model. Based on the finite-element analysis results of the modified three layers model, it is shown that the width and the length of patching had only a marginal effect on the SIF. On the other hand, the effect of the number of layers of patching on the reduction of SIF was more pronounced.
    publisherAmerican Society of Civil Engineers
    titleStudy of Stress Intensity Factor of a Cracked Steel Plate with a Single-Side CFRP Composite Patching
    typeJournal Paper
    journal volume14
    journal issue6
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0000136
    treeJournal of Composites for Construction:;2010:;Volume ( 014 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian